留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能同步辐射光源增强器隧道网测量及精度研究

闫皓月 董岚 王铜 梁静 马娜 王小龙 门玲鸰 卢尚 韩圆颖 闫路平 张露彦 刘晓阳 李波 何振强 柯志勇

闫皓月, 董岚, 王铜, 等. 高能同步辐射光源增强器隧道网测量及精度研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250055
引用本文: 闫皓月, 董岚, 王铜, 等. 高能同步辐射光源增强器隧道网测量及精度研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250055
Yan Haoyue, Dong Lan, Wang Tong, et al. Study on measurement and accuracy of tunnel network in booster of high energy photon source[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250055
Citation: Yan Haoyue, Dong Lan, Wang Tong, et al. Study on measurement and accuracy of tunnel network in booster of high energy photon source[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250055

高能同步辐射光源增强器隧道网测量及精度研究

doi: 10.11884/HPLPB202537.250055
基金项目: 国家自然科学基金项目(12075264)
详细信息
    作者简介:

    闫皓月,yanhy@ihep.ac.cn

    通讯作者:

    董 岚,dongl@ihep.ac.cn

  • 中图分类号: TL505;P258

Study on measurement and accuracy of tunnel network in booster of high energy photon source

  • 摘要: 随着粒子加速器对束流的稳定性要求越来越高,对工程控制网的精度提出了更高的要求,本文以高能同步辐射光源(HEPS)周长454 m的增强器为例,针对隧道内空间狭长、无法大范围通视的不利条件,提出了基于激光跟踪仪精密测量的控制网布设方案及测量方法;同时,面对测量环节中测站多和测点密的数据有效性检测难题,提出了相邻单站拟合及多站拟合的观测过程质量控制方法,点位拟合误差RMS优于0.1 mm;最终,控制网的径向、切向及高程方向各坐标分量的绝对点位误差RMS达到0.2 mm,满足设备安装精度要求。同时,为了监测增强器土建完毕初期的稳定性,对增强器控制网在一年内进行了两期观测,测量结果表明:增强器隧道在一年内产生了10 mm左右变形,具体表现为隧道地基在正东偏南、正北偏西、正南偏西三区域向外膨胀。
  • 图  1  隧道截面控制点分布图

    Figure  1.  Distribution of control points in tunnel section

    图  2  HEPS装置坐标系定义

    Figure  2.  HEPS device coordinate system definition

    图  3  跟踪仪测量示意图

    Figure  3.  Tracker measurement diagram

    图  4  增强器首次测量拟合偏差统计

    Figure  4.  First measurement of the booster fitting deviation statistics

    图  5  增强器第二次测量拟合偏差统

    Figure  5.  Statistics of fitting deviation of the second measurement of the booster

    图  6  增强器首次测量绝对点位精度统计

    Figure  6.  Absolute point accuracy statistics for the first measurement of the booster

    图  7  增强器首次测量相对点位精度统计

    Figure  7.  Relative point accuracy statistics of the first measurement of the booster

    图  8  增强器第二次测量绝对点位精度统计

    Figure  8.  Absolute point accuracy statistics of the second measurement of the booster

    图  9  增强器第二次测量相对点位精度统计

    Figure  9.  Relative point accuracy statistics of the second measurement of the booster

    图  10  增强器变形示意图

    Figure  10.  Distortion diagram of the booster

    图  11  高能光源俯瞰图

    Figure  11.  High Energy Photon Source overhead view

    图  12  三次测量坐标差值

    Figure  12.  The differences in coordinates from three measurements

    表  1  测站间拟合精度统计表

    Table  1.   Statistical table of fitting accuracy between stations

    maximum value/mm minimum value/mm mean value/mm RMS/mm
    first adjacent stations fitting 0.121 0.015 0.055 0.058
    first multi-station fitting 0.142 0.016 0.051 0.059
    second adjacent stations fitting 0.166 0.043 0.094 0.096
    second multi-station fitting 0.166 0.048 0.089 0.096
    下载: 导出CSV

    表  2  两次地面网成果及坐标对比

    Table  2.   Two ground network results and coordinate comparison

    pointx/mmy/mmz/mmx/mmy/mmz/mmΔx/mmΔy/mmΔz/mm
    first surface network resultssecond surface network resultsdifference value
    P03B130232.55475392.72757803.56173130231.603775393.0439757803.75950.9500.3170.198
    P04B130233.83275376.15157824.9754130233.495175379.0280757824.72470.337−2.877−0.251
    下载: 导出CSV

    表  3  增强器首次测量精度统计表

    Table  3.   First measurement accuracy statistics table of the booster

    Mr/mm Mt/mm Mz/mm
    absolute point error maximum value 0.087 0.068 0.069
    minimum value 0.000 0.000 0.000
    RMS 0.057 0.044 0.044
    mean value 0.054 0.038 0.044
    relative point error maximum value 0.013 0.010 0.041
    minimum value 0.008 0.008 0.026
    RMS 0.009 0.009 0.034
    mean value 0.009 0.009 0.034
    下载: 导出CSV

    表  4  增强器第二次测量精度统计表

    Table  4.   Statistical table of the second measurement accuracy of the booster

    Mr/mm Mt/mm Mz/mm
    absolute point error maximum value 0.296 0.230 0.093
    minimum value 0.000 0.000 0.000
    RMS 0.193 0.152 0.042
    mean value 0.185 0.137 0.041
    relative point error maximum value 0.065 0.047 0.036
    minimum value 0.037 0.027 0.024
    RMS 0.055 0.040 0.029
    mean value 0.055 0.040 0.028
    下载: 导出CSV

    表  5  两期数据永久点坐标差值

    Table  5.   The difference of permanent point coordinates between two periods of data

    point Δx/mm Δy/mm Δz/mm
    P03B 0.950 0.317 0.198
    P04B 0.337 −2.505 −0.250
    下载: 导出CSV

    表  6  第一次与第二次测量单站数据拟合结果

    Table  6.   The first and second measurements of the single station data fitting results (mm)

    pointxyzpointxyzΔxΔyΔzdeviation
    booster first measurementbooster second measurementdifference of fit
    N01E2154.0153419.19472.972N01E2153.9253419.10372.9470.0900.091−0.0250.130
    P03B455.7532936.7561584.657P03B452.1132939.3241584.397−3.640−2.5680.2604.462
    N84C1998.1158896.537237.889N84C1998.5048896.623237.9220.389−0.0860.0330.399
    N84E1405.3029035.10176.752N84E1405.4099035.36476.836−0.107−0.2630.0840.296
    N83C2190.50813907.794−29.339N83C2190.79013908.252−29.0050.282−0.4580.3340.633
    N02E3292.4401579.13486.768N02E3292.0271579.54286.6530.4130.408−0.1150.592
    N03E4966.3066568.88195.168N03E4965.9086569.41695.0310.3980.535−0.1370.681
    N04E7071.91511371.41867.343N04E7071.85511371.82367.2820.0600.405−0.0610.414
    N05E9635.48616029.97284.583N05E9636.13316029.98784.687−0.6470.0150.1040.656
    N01E2154.0153419.19472.972N01E2153.9253419.10372.9470.0900.091−0.0250.130
    N46E13005.9025004.35799.298N46E13006.2825004.65399.6680.380−0.2960.3700.607
    N45E7991.0252187.28080.901N45E7991.2972187.54181.2250.272−0.2610.3240.497
    N44E3703.471852.225105.812N44E3703.690852.140106.0740.219−0.0850.2620.352
    N44C1681.8371920.423318.687N44C1681.6751920.891318.968−0.162−0.4680.2810.569
    N43E−73.7984043.16386.369N43E−73.6344043.36186.3930.1640.1980.0240.258
    P04B2002.4932183.5221528.857P04B2000.8212186.3911527.4911.6722.8691.3663.591
    N43C2636.8621709.145357.933N43C2637.1331708.907357.936−0.271−0.2380.0030.361
    N42C6406.1835574.865319.908N42C6406.6195574.626319.494−0.436−0.239−0.4140.647
    N42E3857.9647857.32093.410N42E3858.0097857.53393.070−0.0450.213−0.3400.404
    下载: 导出CSV

    表  7  第二次与第三次测量单站数据拟合结果

    Table  7.   The second and third measurements of the single station data fitting results (mm)

    pointxyzpointxyzΔxΔyΔzdeviation
    booster first measurementbooster second measurementdifference of fit
    N02E2430.2612204.415288.202N02E2430.2062204.456288.2870.0550.0410.0850.109
    N03A627.5506670.6401383.339N03A627.6246670.6831383.2290.0740.0430.1110.140
    N04A1734.09412537.9451382.390N04A1734.06712538.0401382.346−0.0270.0950.0450.108
    N83B6895.97413549.8491384.002N83B6896.05213549.9601384.001−0.078−0.1110.0020.136
    N84B4236.8059399.4011383.172N84B4236.8569399.4821383.166−0.051−0.0810.0070.096
    N84A5501.7538583.2141383.938N84A5501.9058583.2371383.924−0.152−0.0230.0150.154
    N01C1328.6424234.699420.347N01C1328.5924234.776420.3120.050−0.077−0.0360.099
    P03B1909.0933640.8491382.848P03B1909.8633640.6971382.845−0.7700.1520.0040.784
    N01A2051.3841546.7251382.119N01A2051.3941546.7081382.021−0.0100.0170.0990.101
    N44B1277.8272778.1621551.890N44B1277.8522778.1361551.9300.025−0.026−0.0400.053
    N44A−120.8013287.9631552.411N44A−120.7363287.9521552.4510.065−0.011−0.0400.077
    N43A1371.188171.9881549.324N43A1371.181172.0721549.4120.0070.084−0.0880.121
    P04B1367.6882001.6201530.638P04B1368.1302001.6021530.622−0.4420.0180.0160.442
    N43C−724.7742470.177354.789N43C−724.8572470.072354.698−0.0830.105−0.0910.161
    N42C3316.9247206.586316.347N42C3316.9537206.461316.248−0.0290.125−0.0990.162
    N42B3519.2407122.1331555.201N42B3519.2467122.0241555.186−0.0060.1090.0150.110
    N42A4759.5576322.9211556.183N42A4759.5066322.8451556.2060.0510.076−0.0230.095
    N41C6361.83511810.764326.681N41C6361.73411810.635326.6540.1010.129−0.0270.166
    N44B1277.8272778.1621551.890N44B1277.8522778.1361551.9300.025−0.026−0.0400.053
    下载: 导出CSV
  • [1] 焦毅, 潘卫民. 高能同步辐射光源[J]. 强激光与粒子束, 2022, 34:104002

    Jiao Yi, Pan Weimin. High energy photon source[J]. High Power Laser and Particle Beams, 2022, 34: 104002
    [2] 蔡国柱, 王少明, 满开第, 等. CSR工程3维测量控制网[J]. 强激光与粒子束, 2005, 17(10):1590-1594

    Cai Guozhu, Wang Shaoming, Man Kaidi, et al. Survey control network of HIRFL-CSR[J]. High Power Laser and Particle Beams, 2005, 17(10): 1590-1594
    [3] 于成浩, 董岚, 柯明, 等. 大尺寸激光跟踪仪三维控制网平面精度研究[J]. 测绘科学, 2008, 33(2):42-44

    Yu Chenghao, Dong Lan, Ke Ming, et al. The plane accuracy research of 3D control network based on laser tracker in large-scale space[J]. Science of Surveying and Mapping, 2008, 33(2): 42-44
    [4] 王铜, 董岚, 梁静, 等. 中国散裂中子源准直控制网数据处理方法[J]. 强激光与粒子束, 2021, 33:104002

    Wang Tong, Dong Lan, Liang Jing, et al. Adjustment method of control network for alignment in CSNS[J]. High Power Laser and Particle Beams, 2021, 33: 104002
    [5] 马娜, 董岚, 梁静, 等. 中国散裂中子源隧道控制网测量方法及精度探讨[J]. 核科学与工程, 2018, 38(3):411-416

    Ma Na, Dong Lan, Liang Jing, et al. Measurement of the tunnel control network of CSNS and accuracy research[J]. Nuclear Science and Engineering, 2018, 38(3): 411-416
    [6] 郭迎钢, 李宗春, 李广云, 等. 粒子加速器工程控制网研究进展与展望[J]. 测绘通报, 2020(1):136-141

    Guo Yinggang, Li Zongchun, Li Guangyun, et al. Progress and prospect of engineering control network for particle accelerator[J]. Bulletin of Surveying and Mapping, 2020(1): 136-141
    [7] 于成浩, 柯明. 基于激光跟踪仪的三维控制网测量精度分析[J]. 测绘科学, 2006, 31(3):25-27,3

    Yu Chenghao, Ke Ming. The measurement accuracy analysis of three dimensional control network based on laser tracker[J]. Science of Surveying and Mapping, 2006, 31(3): 25-27,3
    [8] 王巍. 合肥光源升级改造测量准直及测量精度的研究[D]. 合肥: 中国科学技术大学, 2016

    Wang Wei. Survey and alignment of the HLS II upgrade project and study of the measurement precision[D]. Hefei: University of Science and Technology of China, 2016
    [9] Wu Enchen, Wang Wei, Li Xiao, et al. Research on fusion and deformation analysis of decade’ HLS-II control network surveying data[J]. Journal of Instrumentation, 2024, 19: P05043. doi: 10.1088/1748-0221/19/05/P05043
    [10] 闫皓月, 董岚, 王铜, 等. 高能同步辐射光源地面网测量方案及数据处理[J]. 强激光与粒子束, 2023, 35:114003 doi: 10.11884/HPLPB202335.230117

    Yan Haoyue, Dong Lan, Wang Tong, et al. Surface network survey scheme and data processing at high energy photon source[J]. High Power Laser and Particle Beams, 2023, 35: 114003 doi: 10.11884/HPLPB202335.230117
    [11] Dong Lan. The alignment of BEPCII LINAC[C]//8th International Workshop on Accelerator Alignment. 2004.
    [12] Spatial Metri X Corporation. SMX tracker 4000, 4500 operator’s guide[R]. Lake Mary: FARO Technologies, Inc. , 2002.
    [13] 东莞中子科学中心. 激光跟踪仪测量数据处理系统V1.0: 2017SR681327[P]. 2017-04-03

    Dongguan Neutron Science Center. Laser tracker data processing system V1.0: 2017SR681327[P]. 2017-04-03
    [14] 马娜, 董岚, 梁静, 等. 中国散裂中子源直线加速器控制网测量及精度研究[J]. 测绘通报, 2016(1):104-107

    Ma Na, Dong Lan, Liang Jing, et al. Measurement and research of control network's accuracy of CSNS linear accelerator[J]. Bulletin of Surveying and Mapping, 2016(1): 104-107
    [15] 郭迎钢, 李宗春, 刘忠贺, 等. 加速器隧道控制网变形可监测性及稳定性分析[J]. 原子能科学技术, 2019, 53(9):1634-1642

    Guo Yinggang, Li Zongchun, Liu Zhonghe, et al. Deformation detectability and stability analysis for tunnel control network of particle accelerator[J]. Atomic Energy Science and Technology, 2019, 53(9): 1634-1642
    [16] 于成浩, 柯明, 赵振堂. 提高激光跟踪仪测量精度的措施[J]. 测绘科学, 2007, 32(2):54-56,178

    Yu Chenghao, Ke Ming, Zhao Zhentang. The accuracy enhancement measures for laser tracker[J]. Science of Surveying and Mapping, 2007, 32(2): 54-56,178
  • 加载中
图(12) / 表(7)
计量
  • 文章访问数:  32
  • HTML全文浏览量:  23
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-27
  • 修回日期:  2025-08-13
  • 录用日期:  2025-08-12
  • 网络出版日期:  2025-08-16

目录

    /

    返回文章
    返回