留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热管冷却反应堆堆芯热力耦合程序开发

孙腾 柴翔

孙腾, 柴翔. 热管冷却反应堆堆芯热力耦合程序开发[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250056
引用本文: 孙腾, 柴翔. 热管冷却反应堆堆芯热力耦合程序开发[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250056
Sun Teng, Chai Xiang. Development of thermal-mechanical coupling program for heat pipe cooled reactor core[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250056
Citation: Sun Teng, Chai Xiang. Development of thermal-mechanical coupling program for heat pipe cooled reactor core[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250056

热管冷却反应堆堆芯热力耦合程序开发

doi: 10.11884/HPLPB202537.250056
详细信息
    作者简介:

    孙 腾,sun_teng.3@sjtu.edu.cn

    通讯作者:

    柴 翔,xiangchai@sjtu.edu.cn

  • 中图分类号: TL351

Development of thermal-mechanical coupling program for heat pipe cooled reactor core

  • 摘要: 为研究接触和轴向功率对热管冷却反应堆堆芯热力学性能的影响,基于FEniCS开源平台开发了一套热力耦合分析程序。该程序使用简化方法求解二维、三维接触压力,主要包括间隙传热模型、线弹性力学模型和多维接触压力求解模型。以MegaPower反应堆为对象,首先使用商业软件ANSYS验证了程序的准确性,然后对堆芯进行热力耦合模拟,分析温度及Mises应力场。结果表明:考虑接触时,燃料棒峰值温度显著降低,Mises应力有所减小;基体峰值温度变化不大,Mises应力却显著增大;轴向功率主要影响燃料棒Mises应力,基体Mises应力则主要受接触压力影响。
  • 图  1  MegaPower热管堆结构

    Figure  1.  Structure of MegaPower heat pipe reactor

    图  2  计算几何模型

    Figure  2.  Computational geometric model

    图  3  二维接触压力求解

    Figure  3.  2D contact pressure analysis

    图  4  温度分布结果

    Figure  4.  Results of temperature distribution

    图  5  燃料棒的Mises应力

    Figure  5.  Mises stress of fuel pin

    图  6  基体的Mises应力

    Figure  6.  Mises stress of monolith

    图  7  接触压力结果

    Figure  7.  Results of contact pressure

    图  8  温度分布结果

    Figure  8.  Results of temperature distribution

    图  9  燃料棒的Mises应力

    Figure  9.  Mises stress of fuel pin

    图  11  107号基本单元沿路径1的温度分布

    Figure  11.  Temperature distribution along path 1 for No.107 basic unit

    图  10  基体的Mises应力

    Figure  10.  Mises stress of monolith

    图  12  温度分布结果

    Figure  12.  Results of temperature distribution

    图  13  二维接触压力与三维接触压力对比

    Figure  13.  Comparison of contact pressure (2D-3D)

    图  14  燃料棒的Mises应力

    Figure  14.  Mises stress of fuel pin

    图  15  基体的Mises应力

    Figure  15.  Mises stress of monolith

    图  16  温度分布结果

    Figure  16.  Results of temperature distribution

    图  17  107号基本单元在不同高度处沿路径1的温度分布

    Figure  17.  Temperature distribution along path 1 at different heights for No.107 basic unit

    图  18  燃料棒和基体的Mises应力

    Figure  18.  Mises stress of monolith and fuel pin

    图  19  107号基本单元在不同高度处沿路径1的Mises应力

    Figure  19.  Mises stress along path 1 at different heights for No.107 basic unit

    表  1  堆芯几何参数

    Table  1.   Parameters of reactor core

    fuel pin outer
    diameter/mm
    gas gap
    thickness/mm
    fuel-to-fuel
    pitch/mm
    heat pipe (HP) hole
    diameter/mm
    fuel-to-HP
    pitch/mm
    HP-to-HP
    pitch/mm
    web thickness between
    HP-to-edge of block/mm
    height/
    mm
    14.12 0.065 16 15.75 16 27.713 1.5 1500
    下载: 导出CSV

    表  2  材料物性

    Table  2.   Properties of materials

    element thermal conductivity/(W·mm−1·K−1) elastic modulus/MPa Poisson’s ratio thermal expansion coefficient/K−1
    fuel 0.002 1.5×105 0.3 1.05×10−5
    monolith 0.016 2.0×105 0.3 1.10×10−5
    下载: 导出CSV

    表  3  107号燃料棒中心的应力分量

    Table  3.   Stress components at the center of No.107 fuel pin

    $ {\sigma }_{x} $/MPa $ {\sigma }_{y} $/MPa $ {\sigma }_{{\textit{z}}} $/MPa $ {\tau }_{xy} $/MPa $ {\tau }_{x{\textit{z}}} $/MPa $ {\tau }_{y{\textit{z}}} $/MPa
    ignoring contact −33.3 −33.4 1138.0 −0.004 0.0006 −0.025
    considering contact −98.3 −98.4 1157.3 −0.016 0.0004 −0.024
    下载: 导出CSV

    表  4  107号基本单元基体侧应力集中区域某点的应力分量

    Table  4.   Stress components at a specific point in the stress concentration zone on the monolith side of No. 107 basic unit

    $ {\sigma }_{x} $/MPa $ {\sigma }_{y} $/MPa $ {\sigma }_{{\textit{z}}} $/MPa $ {\tau }_{xy} $/MPa $ {\tau }_{x{\textit{z}}} $/MPa $ {\tau }_{y{\textit{z}}} $/MPa
    ignoring contact 0.88 −0.96 1488.4 0.155 0.0002 0.0015
    considering contact −64.9 473.5 1365.7 −0.097 0.0003 0.1807
    下载: 导出CSV
  • [1] Grover G M, Cotter T P, Erickson G F. Structures of very high thermal conductance[J]. Journal of Applied Physics, 1964, 35(6): 1990-1991. doi: 10.1063/1.1713792
    [2] Ranken W A, Houts M G. Heat pipe cooled reactors for multi-kilowatt space power supplies[C]//9th Internationa1 Heat Pipe Conference. 1995.
    [3] Houts M G, Poston D I, Ranken W A. Heatpipe space power and propulsion systems[J]. AIP Conference Proceedings, 1996, 361(1): 1155-1162.
    [4] Mcclure P R, Poston D I, Dixon D D. Final results of Demonstration Using Flattop Fissions (DUFF) experiment[R]. US: LANL, 2012.
    [5] Vandyke M, Martin J. Non-nuclear testing of reactor systems in the early flight fission test facilities (EFF-TF)[C]//2004 International Congress on Advances in Nuclear Power Plants (ICAPP 2004). 2004.
    [6] Mcclure P R, Poston D I, Gibson M A, et al. Kilopower project: the KRUSTY fission power experiment and potential missions[J]. Nuclear Technology, 2020, 206(s1): S1-S12.
    [7] Sterbentz J W, Werner J E, Hummel A J, et al. Preliminary assessment of two alternative core design concepts for the special purpose reactor[R]. Idaho Falls: Idaho National Lab (INL), 2017.
    [8] Alnæs M S, Blechta J, Hake J, et al. The FEniCS project version 1.5[J]. Archive of Numerical Software, 2015, 3(100): 9-23.
    [9] Logg A, Mardal K A, Wells G. Automated solution of differential equations by the finite element method: the FEniCS book[M]. Heidelberg: Springer, 2012.
    [10] Sterbentz J W, Werner J E, Mckellar M G, et al. Special purpose nuclear reactor (5 MW) for reliable power at remote sites assessment report[R]. Idaho Falls: Idaho National Lab (INL), 2017: 5.
    [11] Ross A M, Stoute R L. Heat transfer coefficient between UO2 and zircaloy-2[R]. Ontario: Chalk River, 1962.
    [12] 李登伟. 超临界二氧化碳模块化小堆热工水力及安全分析[D]. 上海: 上海交通大学, 2020: 24-25

    Li Dengwei. Thermal hydraulics and safety analysis of a supercritical carbon-dioxide modular small reactor[D]. Shanghai: Shanghai Jiao Tong University, 2020: 24-25
    [13] Lee K M, Ohn M Y, Lim H S, et al. Study on models for gap conductance between fuel and sheath for CANDU reactors[J]. Annals of Nuclear Energy, 1995, 22(9): 601-610. doi: 10.1016/0306-4549(95)00005-D
    [14] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2007

    Yang Shiming, Tao Wenquan. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2007
    [15] 苏光辉, 秋穗正, 田文喜, 等. 核动力系统热工水力计算方法[M]. 北京: 清华大学出版社, 2013

    Su Guanghui, Qiu Suizheng, Tian Wenxi, et al. Thermal-hydraulic calculation methods for nuclear power systems[M]. Beijing: Tsinghua University Press, 2013
    [16] Barber J R. Contact mechanics[M]. Cham: Springer, 2018.
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  17
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-28
  • 修回日期:  2025-05-13
  • 录用日期:  2025-05-13
  • 网络出版日期:  2025-05-23

目录

    /

    返回文章
    返回