留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压缩电场的微波等离子体反应器设计

杜雨泓 李源媛 张曜 何涛 王林 苟徳梽 洪涛 唐正明

杜雨泓, 李源媛, 张曜, 等. 基于压缩电场的微波等离子体反应器设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250059
引用本文: 杜雨泓, 李源媛, 张曜, 等. 基于压缩电场的微波等离子体反应器设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250059
Du Yuhong, Li Yuanyuan, Zhang Yao, et al. Design of microwave plasma reactor based on compressed electric field[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250059
Citation: Du Yuhong, Li Yuanyuan, Zhang Yao, et al. Design of microwave plasma reactor based on compressed electric field[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250059

基于压缩电场的微波等离子体反应器设计

doi: 10.11884/HPLPB202537.250059
基金项目: 国家自然科学基金项目(62301449);微波能应用与电磁兼容技术创新团队项目(KCXTD2024-2)
详细信息
    作者简介:

    杜雨泓,Duyuh2025@163.com

    通讯作者:

    唐正明,zhengmtang@163.com

  • 中图分类号: TM93

Design of microwave plasma reactor based on compressed electric field

  • 摘要: 微波等离子体因其高电子密度和功率利用效率等优势,在材料合成和化工催化等领域都展现出显著优势。为解决传统反应器反应区小,限制其大规模应用的问题,基于压缩波导原理创新性地提出了一种三棱柱式微波等离子体反应器结构。设计采用三端口对称构型,并在腔体内部引入压缩波导结构,以实现电场的有效叠加和增强;运用多物理场耦合计算方法,系统分析了端口位置和微波相位对腔体内部反射系数和电场分布特性的影响规律。结果显示,优化端口位置可以降低反射系数,提高能量利用利效率;调控端口相位能有效增强电场的叠加效应,使电场集中且广泛分布在石英管区域,峰值场强高达1.64×105 V/m,满足大面积等离子体的激发条件,为后续微波等离子体化学反应的研究奠定了基础。
  • 图  1  双边渐变压缩波导

    Figure  1.  Bilateral gradient compression waveguide

    图  2  不同压缩段长度的端口反射系数

    Figure  2.  Port reflection coefficients for different compression section lengths

    图  3  反应器整体结构

    Figure  3.  The overall structure of the reactor

    图  4  不同总网格数下的电场值

    Figure  4.  Electric field values for different total mesh counts

    图  5  网格单元质量图

    Figure  5.  Grid Cell Quality Chart

    图  6  端口不同位置对应的反射系数

    Figure  6.  The reflection coefficient corresponding to the different positions of the port

    图  7  不同Y0下的石英管电场分布

    Figure  7.  Electric field distribution of quartz tube at different Y0

    图  8  端口3在不同相位下的石英管电场强度

    Figure  8.  The electric field strength of the quartz tube at different phases of port 3

    图  9  不同相位下的电场分布

    Figure  9.  Electromagnetic field distribution at different port phases

    表  1  模型尺寸参数

    Table  1.   Model size parameters

    L0/mm H0/mm L/mm R0/mm d/mm
    480 186 130 15 3
    下载: 导出CSV

    表  2  网格独立性

    Table  2.   Grid independent validation of the geometry model

    No. element size element number mesh element quality
    minimum average
    coarse 35 136 0.192 3 0.651 0
    normal 37 386 0.215 2 0.659 0
    fine 46 568 0.253 2 0.661 4
    finer 57 345 0.204 3 0.665 3
    extra fine 84 252 0.203 0 0.666 2
    extremely fine 154 392 0.183 3 0.672 3
    下载: 导出CSV
  • [1] Bárdoš L, Baránková H. Microwave plasma sources and methods in processing technology[M]. Hoboken: John Wiley & Sons, Inc. , 2022.
    [2] Bhat K S, Sreedevi K, Ravi M. Thermal analysis of electron gun for travelling wave tubes[J]. Applied Surface Science, 2006, 253(2): 679-682. doi: 10.1016/j.apsusc.2005.12.154
    [3] Siores E, Do Rego D. Microwave applications in materials joining[J]. Journal of Materials Processing Technology, 1995, 48(1/4): 619-625.
    [4] 曾凯凯, 莫荣珍, 李宇浩, 等. 等离子表面处理在汽车密封条粘接工艺上的应用[J]. 汽车维修技师, 2024(22):104-106 doi: 10.3969/j.issn.1671-279X.2024.22.050

    Zeng Kaikai, Mo Rongzhen, Li Yuhao, et al. Application of plasma surface treatment in the bonding process of automobile sealing strip[J]. Auto Maintenance, 2024(22): 104-106 doi: 10.3969/j.issn.1671-279X.2024.22.050
    [5] Xiao Wei, Huang Kama, He Jianbo, et al. A novel high-efficiency stable atmospheric microwave plasma device for fluid processing based on ridged waveguide[J]. Journal of Physics D: Applied Physics, 2017, 50: 385201. doi: 10.1088/1361-6463/aa82fe
    [6] Liu Zhuang, Zhang Wencong, Tao Junwu, et al. A microwave-induced room-temperature atmospheric-pressure plasma jet[J]. IEEE Transactions on Plasma Science, 2019, 47(4): 1749-1753. doi: 10.1109/TPS.2019.2904053
    [7] Chan I M, Cheng Wengcheng, Hong F C. Enhanced performance of organic light-emitting devices by atmospheric plasma treatment of indium tin oxide surfaces[J]. Applied Physics Letters, 2002, 80(1): 13-15. doi: 10.1063/1.1428624
    [8] 傅文杰, 鄢扬. 高功率微波在等离子体填充波导中的传播特性[J]. 强激光与粒子束, 2005, 17(12):1852-1856

    Fu Wenjie, Yan Yang. Propagation characteristics of a high-power microwave in plasma-filled waveguide[J]. High Power Laser and Particle Beams, 2005, 17(12): 1852-1856
    [9] Gu Yajun, Lu J, Grotjohn T, et al. Microwave plasma reactor design for high pressure and high power density diamond synthesis[J]. Diamond and Related Materials, 2012, 24: 210-214. doi: 10.1016/j.diamond.2012.01.026
    [10] Li X J, Tang W Z, Wang F Y, et al. A compact ellipsoidal cavity type microwave plasma reactor for diamond film deposition[J]. Diamond and Related Materials, 2011, 20(3): 374-379. doi: 10.1016/j.diamond.2011.01.025
    [11] Shen Qinghao, Huang Run, Xu Zili, et al. Numerical 3D modeling: microwave plasma torch at intermediate pressure[J]. Applied Sciences, 2020, 10: 5393. doi: 10.3390/app10155393
    [12] 张瑶圃, 吴丽, 黄卡玛. 一种基于矩形压缩波导的5.8 GHz微波等离子体激发装置[J]. 真空电子技术, 2022(2):82-85,106

    Zhang Yaopu, Wu Li, Huang Kama. 5.8 GHz microwave plasma source based on compression rectangular waveguides[J]. Vacuum Electronics, 2022(2): 82-85,106
    [13] Hu Yedai, Zhang Wencong, Han Jiahui, et al. Design and study of a large-scale microwave plasma torch with four ports[J]. Processes, 2023, 11: 2589. doi: 10.3390/pr11092589
    [14] 周蓉, 杨晓庆. 一种用于激发微波等离子体的新型矩形压缩波导仿真设计[J]. 真空电子技术, 2016(3):51-53,64 doi: 10.3969/j.issn.1002-8935.2016.03.013

    Zhou Rong, Yang Xiaoqing. Simulation design of a novel rectangular compression waveguide for microwave plasma generating[J]. Vacuum Electronics, 2016(3): 51-53,64 doi: 10.3969/j.issn.1002-8935.2016.03.013
    [15] Hong Y C, Uhm H S. Properties of plasma flames sustained by microwaves and burning hydrocarbon fuels[J]. Physics of Plasmas, 2006, 13: 113501. doi: 10.1063/1.2363348
    [16] Kuo S P, Bivolaru D, Lai H, et al. Characteristics of an arc-seeded microwave plasma torch[J]. IEEE Transactions on Plasma Science, 2004, 32(4): 1734-1741. doi: 10.1109/TPS.2004.832517
    [17] 廖承恩. 微波技术基础[M]. 北京: 国防工业出版社, 1984

    Liao Cheng’en. Fundamentals of microwave technology[M]. Beijing: National Defense Industry Press, 1984
    [18] Zuo S S, Yaran M K, Grotjohn T A, et al. Investigation of diamond deposition uniformity and quality for freestanding film and substrate applications[J]. Diamond and Related Materials, 2008, 17(3): 300-305. doi: 10.1016/j.diamond.2007.12.069
    [19] Tachibana T, Ando Y, Watanabe A, et al. Diamond films grown by a 60-kW microwave plasma chemical vapor deposition system[J]. Diamond and Related Materials, 2001, 10(9/10): 1569-1572.
    [20] Santos T, Valente M A, Monteiro J, et al. Electromagnetic and thermal history during microwave heating[J]. Applied Thermal Engineering, 2011, 31(16): 3255-3261. doi: 10.1016/j.applthermaleng.2011.06.006
    [21] Wang Nan, Yu Jianglong, Tahmasebi A, et al. Experimental study on microwave pyrolysis of an indonesian low-rank coal[J]. Energy & Fuels, 2014, 28(1): 254-263.
    [22] Zhou Jie, Yang Xiaoqing, Ye Jinghua, et al. Arbitrary Lagrangian-Eulerian method for computation of rotating target during microwave heating[J]. International Journal of Heat and Mass Transfer, 2019, 134: 271-285. doi: 10.1016/j.ijheatmasstransfer.2019.01.007
    [23] Więckowski A, Korpas P, Krysicki M, et al. Efficiency optimization for phase controlled multi-source microwave oven[J]. International Journal of Applied Electromagnetics and Mechanics, 2014, 44(2): 235-241. doi: 10.3233/JAE-141764
    [24] 包玉, 何湘, 陈建平, 等. 等离子体对高频微波传输特性的影响[J]. 强激光与粒子束, 2025, 37:013003 doi: 10.11884/HPLPB202537.240296

    Bao Yu, He Xiang, Chen Jianping, et al. Effect of plasma on transmission characteristics of high-frequency microwave[J]. High Power Laser and Particle Beams, 2025, 37: 013003 doi: 10.11884/HPLPB202537.240296
    [25] Verma K, Yang Ran, Gan Hao, et al. An integrated numerical and analytical model to understand the effect of relative phase in a dual-port solid-state microwave heating process[J]. Journal of Food Engineering, 2024, 367: 111869. doi: 10.1016/j.jfoodeng.2023.111869
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  14
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-01
  • 修回日期:  2025-06-08
  • 录用日期:  2025-06-16
  • 网络出版日期:  2025-07-07

目录

    /

    返回文章
    返回