留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一体化小堆氚源项计算分析

陈志宏

陈志宏. 一体化小堆氚源项计算分析[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250061
引用本文: 陈志宏. 一体化小堆氚源项计算分析[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250061
Chen Zhihong. Analysis of tritium source term in an integrated small reactor[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250061
Citation: Chen Zhihong. Analysis of tritium source term in an integrated small reactor[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250061

一体化小堆氚源项计算分析

doi: 10.11884/HPLPB202537.250061
详细信息
    作者简介:

    陈志宏,281744819@qq.com

  • 中图分类号: TL751

Analysis of tritium source term in an integrated small reactor

  • 摘要: 基于一体化小堆堆芯设计特点,分析了氚的产生途径,建立了主回路冷却剂中氚源项计算模型。计算结果表明,单台一体化小堆堆芯氚年产量为1.81 TBq,其主要贡献来源是二次中子源材料Sb-Be和控制棒吸收体材料B4C受中子活化产生,占比分别达到46%和51%。通过对沸水堆(BWR)运行电厂氚的排放数据进行统计,证明了理论分析结果的包络性。基于该分析结果,提出了减小一体化小堆运行期间氚产生量的途径,为一体化小堆优化设计提供指引。分析表明,取消二次中子源或中子源棒采用双层包壳结构,以及控制棒吸收体材料进行更换(如更换为Ag-In-Cd或者铪),将会显著减小一体化小堆的氚产生量。
  • 图  1  堆芯模型

    Figure  1.  Core model

    图  2  中子注量率和核反应截面

    Figure  2.  Neutron flux and nuclear cross-section

    图  3  氚排放量的分布

    Figure  3.  Distribution of tritium release

    表  1  一体化小堆产氚反应机理

    Table  1.   Nuclear reactions of tritium production in integrated small reactors

    production region nuclear reactions
    direct source primary coolant $ {}_{1}^{2}\mathrm{H}+{}_{0}^{1}{\rm{n}}\xrightarrow{({\rm{n}},{\text{γ}} )}{}_{1}^{3}\mathrm{H} $
    indirect source fuel rod $ \mathrm{U}/\mathrm{P}\mathrm{u}+{}_{0}^{1}{\rm{n}}\to \mathrm{F}\mathrm{P}1+\mathrm{F}\mathrm{P}2+{}_{1}^{3}\mathrm{H} $
    secondary source rod $ {}_{4}^{9}\mathrm{B}\mathrm{e}+{}_{0}^{1}{\rm{n}}\xrightarrow{(\mathrm{n},{\text{α}})}{}_{2}^{4}\mathrm{H}\mathrm{e}+{}_{2}^{6}\mathrm{H}\mathrm{e}\underset{}{\Rightarrow }{}_{2}^{6}\mathrm{H}\mathrm{e}\xrightarrow{\beta }{}_{3}^{6}\mathrm{L}\mathrm{i}\underset{}{\Rightarrow }{}_{3}^{6}\mathrm{L}\mathrm{i}+{}_{0}^{1}{\rm{n}}\xrightarrow{(\mathrm{n},{\text{α}})}{}_{2}^{4}\mathrm{H}\mathrm{e}+{}_{1}^{3}\mathrm{H} $
    $ {}_{4}^{9}\mathrm{B}\mathrm{e}+{}_{0}^{1}{\rm{n}}\xrightarrow{(\mathrm{n},\mathrm{T})}{}_{1}^{3}\mathrm{H}+{}_{3}^{7}\mathrm{L}\mathrm{i}\underset{}{\Rightarrow }{}_{3}^{7}\mathrm{L}\mathrm{i}+{}_{0}^{1}{\rm{n}}\xrightarrow{(\mathrm{n},\mathrm{n}{\text{α}})}{}_{2}^{4}\mathrm{H}\mathrm{e}+{}_{0}^{1}{\rm{n}}+{}_{1}^{3}\mathrm{H} $
    control rod $ {}_{5}^{10}\mathrm{B}+{}_{0}^{1}{\rm{n}}\xrightarrow{(\mathrm{n},2{\text{α}})}2{}_{2}^{4}\mathrm{H}\mathrm{e}+{}_{1}^{3}\mathrm{H} $
    $ {}_{5}^{10}\mathrm{B}+{}_{0}^{1}{\rm{n}}\xrightarrow{(\mathrm{n},{\text{α}})}{}_{2}^{4}\mathrm{H}\mathrm{e}+{}_{3}^{7}\mathrm{L}\mathrm{i}\underset{}{\Rightarrow }{}_{3}^{7}\mathrm{L}\mathrm{i}+{}_{0}^{1}{\rm{n}}\xrightarrow{(\mathrm{n},\mathrm{n}{\text{α}})}{}_{2}^{4}\mathrm{H}\mathrm{e}+{}_{0}^{1}{\rm{n}}+{}_{1}^{3}\mathrm{H} $
    $ {}_{5}^{10}\mathrm{B}+{}_{0}^{1}{\rm{n}}\xrightarrow{(\mathrm{n},\mathrm{n}{\text{α}})}{}_{3}^{6}\mathrm{L}\mathrm{i}+{}_{0}^{1}{\rm{n}}+{}_{2}^{4}\mathrm{H}\mathrm{e}\underset{}{\Rightarrow }{}_{3}^{6}\mathrm{L}\mathrm{i}+{}_{0}^{1}{\rm{n}}\xrightarrow{(\mathrm{n},{\text{α}})}{}_{2}^{4}\mathrm{H}\mathrm{e}+{}_{1}^{3}\mathrm{H} $
    $ {}_{5}^{11}\mathrm{B}+{}_{0}^{1}{\rm{n}}\xrightarrow{(\mathrm{n},\mathrm{T})}{}_{4}^{9}\mathrm{B}\mathrm{e}+{}_{1}^{3}\mathrm{H}\underset{}{\Rightarrow }{}_{4}^{9}\mathrm{B}\mathrm{e}+{}_{0}^{1}{\rm{n}}\xrightarrow{(\mathrm{n},{\text{α}})}{}_{2}^{4}\mathrm{H}\mathrm{e}+{}_{2}^{6}\mathrm{H}\mathrm{e}\underset{}{\Rightarrow }{}_{2}^{6}\mathrm{H}\mathrm{e}\xrightarrow{\beta }{}_{3}^{6}\mathrm{L}\mathrm{i}\underset{}{\Rightarrow }{}_{3}^{6}\mathrm{L}\mathrm{i}+{}_{0}^{1}{\rm{n}}\xrightarrow{(\mathrm{n},{\text{α}})}{}_{2}^{4}\mathrm{H}\mathrm{e}+{}_{1}^{3}\mathrm{H} $
    下载: 导出CSV

    表  2  冷却剂中氚的年产生量

    Table  2.   Annual tritium production in coolant

    production source annual tritium production/(TBq·a−1) contribution share/%
    primary coolant 0.02 1
    fuel rod 0.03 2
    secondary source rod 0.83 46
    control rod 0.93 51
    total 1.81 /
    下载: 导出CSV
  • [1] IAEA. Management of waste containing tritium and carbon-14[R]. Technical Report Series No. 421, 2004: 28-35.
    [2] Peterson Jr H T, Baker D A. Tritium production, releases and population doses at nuclear power reactors[J]. Fusion Technology, 1985, 8(2P2): 2544-2550. doi: 10.13182/FST8-2544
    [3] 杨茂春. 压水堆核电站氚的辐射风险分析[J]. 辐射防护通讯, 2000, 20(3): 1-6

    Yang Maochun. Radiation risk analysis of tritium in PWR nuclear power plants[J]. Radiation Protection Bulletin, 2000, 20(3): 1-6
    [4] GB 6249-2025, 核动力厂环境辐射防护规定[S]

    GB 6249-2025, Regulations for environmental radiation protection of nuclear power plant[S]
    [5] 郭庆洋, 张竞宇, 孙业帅, 等. 压水堆主冷却剂中氚源项计算分析[J]. 原子能科学技术, 2018, 52(12): 2113-2117

    Guo Qingyang, Zhang Jingyu, Sun Yeshuai, et al. Calculation analysis of tritium source term in PWR[J]. Atomic Energy Science and Technology, 2018, 52(12): 2113-2117
    [6] 黎辉, 梅其良, 付亚茹. 核电厂氚的产生和排放分析[J]. 原子能科学技术, 2015, 49(4): 739-743

    Li Hui, Mei Qiliang, Fu Yaru. Analyses of generation and release of tritium in nuclear power plant[J]. Atomic Energy Science and Technology, 2015, 49(4): 739-743
    [7] 杨昭林, 王亮, 周永海, 等. 压水堆核电厂氚排放源项的计算及验证[J]. 核科学与工程, 2020, 40(3): 359-366

    Yang Zhaolin, Wang Liang, Zhou Yonghai, et al. Calculation and verification of tritium release for PWR nuclear power plants[J]. Nuclear Science and Engineering, 2020, 40(3): 359-366
    [8] 付鹏涛, 蔡德昌, 李志军. 基于CPR1000的压水堆氚排放量研究[C]//第十七届反应堆数值计算与粒子输运学术会议CORPHY暨2018年反应堆物理会议(CORPHY-2018). 2018

    Fu Pengtao, Cai Dechang, Li Zhijun. Study of tritium production based on CPR1000 discharge[C]//CORPHY-2018.2018
    [9] 付鹏涛, 代明亮, 祝兆文, 等. 基于运行反馈的压水堆氚排放量研究[J]. 强激光与粒子束, 2022, 34: 026009 doi: 10.11884/HPLPB202234.210399

    Fu Pengtao, Dai Mingliang, Zhu Zhaowen, et al. Study of annual tritium discharge in pressurized water reactor based on historical data[J]. High Power Laser and Particle Beams, 2022, 34: 026009 doi: 10.11884/HPLPB202234.210399
    [10] 王奇. 取消次级中子源对压水堆氚源项的影响分析[J]. 强激光与粒子束, 2023, 35: 116004 doi: 10.11884/HPLPB202335.230096

    Wang Qi. Analysis of influence of canceling secondary neutron sources on tritium source terms in pressurized water reactors[J]. High Power Laser and Particle Beams, 2023, 35: 116004 doi: 10.11884/HPLPB202335.230096
    [11] 张作义, 张亚军, 贾海军. 低温核供热堆关键技术[M]. 上海: 上海交通大学出版社, 2023

    Zhang Zuoyi, Zhang Yajun, Jia Haijun. Key technologies of low-temperature nuclear heating reactors[M]. Shanghai: Shanghai Jiao Tong University Press, 2023
    [12] Chretien V, Le Guen B. Rejets de tritium et impact autour des centrales EDF[C]//Proceedings of Tritium Conference in Paris France. 2009: 23-24.
    [13] Andrieu C, Ravel S, Ducros G, et al. Release of fission tritium through zircaloy-4 fuel cladding tubes[J]. Journal of Nuclear Materials, 2005, 347(1/2): 12-19.
    [14] Ray J W. Tritium in power reactors[J]. Reactor and Fuel Processing Technology, 1968-1969, 12(1): 19-26.
    [15] James M, Smith Jr. The significance of tritium in water reactors, GE, aped, 9/19/67.
    [16] Joseph W, Ray, et al. Investigation pf tritium generation and release in PM nuclear power plants, BMI-1787, 10/31/66.
    [17] Kearns J J. Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, Zircaloy-2 and Zircaloy-4[J]. Journal of Nuclear Materials, 1967, 22(3): 292-303. doi: 10.1016/0022-3115(67)90047-5
    [18] U. S. NRC. Arkansas nuclear one, unit 2, safety analysis report, amendment 31[R]. ML23324A028, 2023.
    [19] U. S. NRC. Columbia generating station, final safety analysis report amendment 67[R]. ML23346A215, 2024.
    [20] U. S. NRC. Millstone power station, unit 2, revision 41 to updated final safety analysis report, chapter 11, radioactive waste processing and radiation protection systems[R]. ML23193A875, 2023.
    [21] U. S. NRC. Perry nuclear power plant, supplemental information for revision 22 to updated safety analysis report, chapter 11, radioactive waste management[R]. ML21361A199, 2021.
    [22] U. S. NRC. Radioactive effluent and environmental reports[EB/OL]. 2025[2025-03-08]. https://www.nrc.gov/reactors/operating/ops-experience/tritium/plant-info.
    [23] U. S. NRC. List of power reactor units[EB/OL]. 2025[2025-03-08]. https://www.nrc.gov/reactors/operating/list-power-reactor-units.
    [24] U. S. NRC. Operating time[EB/OL]. 2025[2025-03-08]. https://nrcoe.inl.gov/ReactorYears.
    [25] 陈志宏, 李志勇, 沈季, 等. 某型反应堆启动中子源设计研究[J]. 核科学与工程, 2024, 44(6): 1215-1225

    Chen Zhihong, Li Zhiyong, Shen Ji, et al. Design of the start-up neutron source for a reactor[J]. Nuclear Science and Engineering, 2024, 44(6): 1215-1225
    [26] 章安龙. 反应堆无二次中子源装料和启动[J]. 核科学与工程, 2019, 39(3): 345-349 doi: 10.3969/j.issn.0258-0918.2019.03.002

    Zhang Anlong. Reactor reloading and startup without secondary neutron source[J]. Nuclear Science and Engineering, 2019, 39(3): 345-349 doi: 10.3969/j.issn.0258-0918.2019.03.002
    [27] 杨嗣, 沈亚杰, 高永恒, 等. CNP600机组替代二次中子源装料及无源临界[J]. 中国核电, 2021, 14(1): 123-128

    Yang Si, Shen Yajie, Gao Yongheng, et al. Reactor reloading with replacement of secondary neutron source and criticality without neutron source in CNP600 nuclear power plant[J]. China Nuclear Power, 2021, 14(1): 123-128
    [28] 肖会文, 李想, 刘国明, 等. “华龙一号”取消二次中子源研究[J]. 现代应用物理, 2023, 14: 040401 doi: 10.12061/j.issn.2095-6223.2023.040401

    Xiao Huiwen, Li Xiang, Liu Guoming, et al. The removal of secondary neutron source in HPR1000[J]. Modern Applie Physics, 2023, 14: 040401 doi: 10.12061/j.issn.2095-6223.2023.040401
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  38
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-03
  • 修回日期:  2025-07-14
  • 录用日期:  2025-07-20
  • 网络出版日期:  2025-07-23

目录

    /

    返回文章
    返回