留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于螺旋谐振器的同步扫描条纹相机谐振耦合电路设计与模拟研究

李家州 温家星 李强 张兴 周宇罡

李家州, 温家星, 李强, 等. 基于螺旋谐振器的同步扫描条纹相机谐振耦合电路设计与模拟研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250063
引用本文: 李家州, 温家星, 李强, 等. 基于螺旋谐振器的同步扫描条纹相机谐振耦合电路设计与模拟研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250063
Li Jiazhou, Wen Jiaxing, Li Qiang, et al. Design and simulation of resonant coupling circuit for synchroscan streak camera based on helical resonator[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250063
Citation: Li Jiazhou, Wen Jiaxing, Li Qiang, et al. Design and simulation of resonant coupling circuit for synchroscan streak camera based on helical resonator[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250063

基于螺旋谐振器的同步扫描条纹相机谐振耦合电路设计与模拟研究

doi: 10.11884/HPLPB202537.250063
基金项目: 四川省科技计划项目(2024ZDZX0012)
详细信息
    作者简介:

    李家州,1046476976@qq.com

    通讯作者:

    李 强,liqiangsir@swust.edu.cn

  • 中图分类号: TN713+.2

Design and simulation of resonant coupling circuit for synchroscan streak camera based on helical resonator

  • 摘要: 随着科学技术的快速发展,高速光学成像与超快诊断技术在科学、工业、国防和医学等领域中的应用愈发重要。同步扫描条纹相机作为一种超快光现象探测仪器,与高重频激光器协同使用,实现高精度时间同步的泵浦探测,通过对微弱光信号的累积与放大实现高信噪比探测。然而,现有同步扫描电路在长时间工作模式下,信号源器件累计高频噪声随之增加,同时存在缺少具体的阻抗匹配设计方法的问题,影响了条纹相机的时间分辨性能提升。综合考虑多种变压器结构和设计方案,基于螺旋谐振器进行谐振匹配设计,利用有限元仿真开展相关模拟研究,通过谐振器初级线圈参数的调节,实现了射频功率放大器输出阻抗和容性负载之间匹配。对设计模型进行谐振耦合升压研究表明,在一定功率输入下能够输出高峰值电压,验证了螺旋谐振方法的有效性,通过噪声响应和时间抖动对比分析表明,设计方法能够进一步提升同步扫描时间分辨性能。
  • 图  1  同步扫描电路组成及工作原理

    Figure  1.  Composition and working principle of synchronous scanning circuit

    图  2  螺旋谐振器结构图

    Figure  2.  Helical resonator structure diagram

    图  3  同步扫描谐振耦合电路图

    Figure  3.  Synchronous sweep resonant coupling circuit diagram

    图  4  谐振匹配等效电路模型图

    Figure  4.  Resonant matching equivalent circuit model diagram

    图  5  谐振匹配有限元几何模型

    Figure  5.  Resonant matching finite element geometric model

    图  6  有限元仿真研究流程

    Figure  6.  Finite element simulation research flow

    图  7  螺旋谐振器磁通密度模分布

    Figure  7.  Magnetic flux density mode distribution of helical resonator

    图  8  偏转板间距对特征频率及电场分布影响

    Figure  8.  Influence of deflection plate spacing on characteristic frequency and electric field distribution

    图  9  谐振匹配模型 S 参数图形

    Figure  9.  Resonant matching model S-parameter figure

    图  10  输入探针长度变化对阻抗匹配参数影响

    Figure  10.  Influence of input probe length variation on impedance matching parameters

    图  11  谐振匹配SPICE电路等效及仿真结果

    Figure  11.  Resonant matching SPICE circuit equivalence and simulation results

    图  12  谐振匹配模拟仿真及理论对比图形

    Figure  12.  Resonant matching simulation and theoretical comparison figures

    图  13  谐振匹配相位噪声响应和时间抖动比较

    Figure  13.  Resonance matching phase noise response and time jitter comparison

    表  1  谐振匹配模型设计参数

    Table  1.   Design parameters of the resonant matching model

    model part parameter dimension/mm
    primary coil ${L_1}$ 1.00
    ${N_{{\text{pri}}}}$ 1.50
    ${r_{{\text{pri}}}}$ 5.15
    ${\tau _{{\text{pri}}}}$ 3.50
    ${d_{{\text{pri}}}}$ 2.00
    secondary coil $N$ 4.20
    $d$ 21.10
    $b$ 31.70
    $\tau $ 7.60
    ${d_0}$ 3.80
    helical resonator $D$ 38.50
    $B$ 51.10
    $T$ 0.50
    deflection system ${L_{\text{t}}}$ 100.00
    ${D_{\text{t}}}$ 48.00
    ${l_{\text{p}}}$ 45.00
    ${w_{\text{p}}}$ 30.00
    ${d_{\text{p}}}$ 6.00
    下载: 导出CSV

    表  2  谐振匹配模型材料定义

    Table  2.   Material definition for resonant matching model

    model part material electrical conductivity/(107 S·m−1) relative permittivity relative permeability
    resonator、tube air(vacuum) 0 1 1
    resonator、wire copper 5.998 1 1
    tube conductor aluminum 3.774 1 1
    tube shielding kovar alloy 0.2 4.5 100
    wire shielding PTFE 0 2.1 1
    insulation ring ceramics 0 20 40
    下载: 导出CSV

    表  3  线圈电感参数结果

    Table  3.   Coil inductance parameter results

    object primary coil/μH secondary coil/μH mutual inductance/nH coupling coefficient
    helical resonator 0.022427 0.16524 2.7515 0.0452
    resonant matching model 0.022361 0.16432 2.7462 0.0453
    下载: 导出CSV

    表  4  谐振匹配模型仿真参数结果

    Table  4.   Resonant matching model simulation parameter results

    plate spacing/mm plate capacitance/pF total capacitance/pF characteristic frequency/MHz quality factor
    2.00 5.97 18.46 91.382+0.025963i 1759.8
    6.00 1.99 13.83 105.58+0.035022i 1507.3
    下载: 导出CSV

    表  5  不同阻抗匹配方案的瞬时时间分辨率结果

    Table  5.   The instantaneous time resolution results of different impedance matching schemes

    scheme $ \Delta {t_{{\text{tube}}}} $/ps $ \Delta {t_{\text{s}}} $/ps $ \Delta {t_{\text{j}}} $/ps $\Delta {t_{{\text{ins}}}}$/ps
    reference research[19] 1.9 2.4 1.4 3.3
    this paper 1.9 2.4 0.4 3.0
    下载: 导出CSV
  • [1] 王超, 田进寿, 康轶凡, 等. 时间分辨条纹相机技术的发展及相关研究展望[J]. 真空科学与技术学报, 2012, 32(7):653-660

    Wang Chao, Tian Jinshou, Kang Yifan, et al. Latest progress and development trends of time-resolved streak camera technology[J]. Chinese Journal of Vacuum Science and Technology, 2012, 32(7): 653-660
    [2] Pliss A, Zhao Lingling, Ohulchanskyy T Y, et al. Fluorescence lifetime of fluorescent proteins as an intracellular environment probe sensing the cell cycle progression[J]. ACS Chemical Biology, 2012, 7(8): 1385-1392. doi: 10.1021/cb300065w
    [3] 屈军乐, 牛憨笨, 李冀, 等. 时域两维荧光寿命显微测量研究[J]. 光学学报, 2000, 20(12):1657-1661

    Qu Junle, Niu Hanben, Li Ji, et al. A study of time domain 2-dimensional fluorescence lifetime microscopic measurement[J]. Acta Optica Sinica, 2000, 20(12): 1657-1661
    [4] van Stokkum I H M, Gauden M, Crosson S, et al. The primary photophysics of the Avena sativa phototropin 1 LOV2 domain observed with time-resolved emission spectroscopy[J]. Photochemistry and Photobiology, 2011, 87(3): 534-541. doi: 10.1111/j.1751-1097.2011.00903.x
    [5] 柳雪玲, 田进寿, 田丽萍, 等. 一种高偏转灵敏度同步扫描条纹管[J]. 物理学报, 2021, 70:218502 doi: 10.7498/aps.70.20210814

    Liu Xueling, Tian Jinshou, Tian Liping, et al. A synchroscan streak tube with high deflection sensitivity[J]. Acta Physica Sinica, 2021, 70: 218502 doi: 10.7498/aps.70.20210814
    [6] Finch A, Liu Y, Sleat W E, et al. Phase noise limitations in synchroscan streak camera operation[C]//Proceedings of the 18th International Congress on High Speed Photography and Photonics. 1989: 97-105.
    [7] 王桥莉, 白永林, 朱炳利, 等. 一种用于光学条纹相机的种子源设计[J]. 红外与激光工程, 2015, 44(7):2122-2126

    Wang Qiaoli, Bai Yonglin, Zhu Bingli, et al. A new design of seed source used in optical streak camera[J]. Infrared and Laser Engineering, 2015, 44(7): 2122-2126
    [8] 王俊杰. 条纹相机高压射频同步扫描系统研究及实现[D]. 西安: 西安电子科技大学, 2024

    Wang Junjie. Research and implementation of striped camera high voltage radio frequency synchronized scanning system[D]. Xi’an: Xidian University, 2024
    [9] 张新林, 郗松岳, 姜博, 等. 一种小型化超宽带同轴巴伦的设计与实现[J]. 强激光与粒子束, 2024, 36:083004

    Zhang Xinlin, Xi Songyue, Jiang Bo, et al. Design and implementation of a miniaturised ultra-wideband coaxial Balun[J]. High Power Laser and Particle Beams, 2024, 36: 083004
    [10] 武剑, 董惠娟, 张松柏, 等. 压电超声换能器初级串联匹配新方法[J]. 吉林大学学报(工学版), 2009, 39(6):1641-1645

    Wu Jian, Dong Huijuan, Zhang Songbai, et al. Novel primary series matching scheme for piezoelectric ultrasonic transducer[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(6): 1641-1645
    [11] 陈正, 王淼, 黄垚, 等. 用于钙离子全光囚禁的离子囚禁装置研究[J]. 仪器仪表学报, 2024, 45(2):102-111

    Chen Zheng, Wang Miao, Huang Yao, et al. Research on ion trapping devices for all-optical trapping of calcium ions[J]. Chinese Journal of Scientific Instrument, 2024, 45(2): 102-111
    [12] de Miranda C M, Pichorim S F. Self-resonant frequencies of air-core single-layer solenoid coils calculated by a simple method[J]. Electrical Engineering, 2015, 97(1): 57-64. doi: 10.1007/s00202-014-0312-3
    [13] Nandi J, Sikdar A K, Reza A, et al. Studies and development of a helical resonator for Penning trap application[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 980: 164465. doi: 10.1016/j.nima.2020.164465
    [14] Guo Tian, Liu Peiliang, Lee Chaohong. New designed helical resonator to improve measurement accuracy of magic radio frequency[J]. Chinese Physics B, 2022, 31: 093201. doi: 10.1088/1674-1056/ac6944
    [15] Macalpine W W, Schildknecht R O. Coaxial resonators with helical inner conductor[J]. Proceedings of the IRE, 1959, 47(12): 2099-2105. doi: 10.1109/JRPROC.1959.287128
    [16] Siverns J D, Simkins L R, Weidt S, et al. On the application of radio frequency voltages to ion traps via helical resonators[J]. Applied Physics B, 2012, 107(4): 921-934. doi: 10.1007/s00340-011-4837-0
    [17] Uhring W, Zint C V, Summ P, et al. Very high long-term stability synchroscan streak camera[J]. Review of Scientific Instruments, 2003, 74(5): 2646-2653. doi: 10.1063/1.1569409
    [18] Wlotzko V, Uhring W, Summ P. Impact of laser phase and amplitude noises on streak camera temporal resolution[J]. Review of Scientific Instruments, 2015, 86: 094703. doi: 10.1063/1.4930122
    [19] Uhring W, Zint C V, Summ P, et al. Synchroscan streak camera temporal resolution improvement by phase-locked loop technique[C]//Proceedings of the 25th International Congress on High-Speed Photography and Photonics. 2002: 324-329.
    [20] 周鹏宇. 同步扫描条纹相机功率驱动关键技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2016

    Zhou Pengyu. A key technology of power driven for synchronous scan steak camera[D]. Xi'an: Xi'an Institute of Optics and Fine Mechanics, University of Chinese Academy of Sciences, 2016
    [21] Uhring W, Jung M, Summ P. Image processing provides low-frequency jitter correction for synchroscan streak camera temporal resolution enhancement[C]//Proceedings of Volume 5457, Optical Metrology in Production Engineering. 2004: 245-252.
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  20
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-03
  • 修回日期:  2025-06-22
  • 录用日期:  2025-06-10
  • 网络出版日期:  2025-07-05

目录

    /

    返回文章
    返回