留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于58%DKDP晶体的宽带时间低相干光参量放大研究

许皓 赵晓晖 王韬 张天雄 贺瑞敬 刘栋 季来林 冯伟 崔勇 高妍琦 隋展

许皓, 赵晓晖, 王韬, 等. 基于58%DKDP晶体的宽带时间低相干光参量放大研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250065
引用本文: 许皓, 赵晓晖, 王韬, 等. 基于58%DKDP晶体的宽带时间低相干光参量放大研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250065
Xu Hao, Zhao Xiaohui, Wang Tao, et al. Study on broadband low-temporal-coherence optical parametric amplification based on 58% deuterated DKDP crystal[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250065
Citation: Xu Hao, Zhao Xiaohui, Wang Tao, et al. Study on broadband low-temporal-coherence optical parametric amplification based on 58% deuterated DKDP crystal[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250065

基于58%DKDP晶体的宽带时间低相干光参量放大研究

doi: 10.11884/HPLPB202537.250065
基金项目: 国家自然科学基金项目(62275237, 12074353)
详细信息
    作者简介:

    许 皓,xuhao9100@163.com

    通讯作者:

    赵晓晖,xhzhao_silp@163.com

  • 中图分类号: O437.4

Study on broadband low-temporal-coherence optical parametric amplification based on 58% deuterated DKDP crystal

  • 摘要: 低相干激光驱动器作为新型激光驱动器可抑制激光等离子体不稳定性,在激光惯性约束聚变领域具有重要研究价值。为实现大带宽高功率低相干脉冲参量放大,详细分析了I类共线匹配方式下不同氘化率的 DKDP 晶体参量匹配特性,给出了相位匹配角、走离角、参量带宽等基本匹配参数,得到掺氘量58%DKDP晶体的理论支持参量带宽约为180 nm。在此基础上,基于掺氘量58%的DKDP 晶体进行了宽带时间低相干光参量放大设计,结合三波耦合方程组建立了参量放大的理论模型以及相应的数值分析模型。同时开展了58%DKDP晶体参量放大实验,宽带低相干信号光中心波长为1053 nm,泵浦光波长为532 nm,在2.1倍的增益倍率前提下光谱宽度为40 nm。结果显示,58%DKDP晶体具有很大的增益带宽,结合共线相位匹配方式,有望实现低相干光大带宽高增益放大。
  • 图  1  负单轴晶体共线相位匹配矢量图

    Figure  1.  Collinear phase matching in negative uniaxial crystal

    图  2  不同掺氘量下的相位匹配曲线

    Figure  2.  Phase-matching curves in various deuteration level

    图  3  接受带宽和走离角随掺氘量的变化关系

    Figure  3.  Variation relationships between parametric bandwidths、walk-off angles and deuterium doping level

    图  4  OPA 过程的数据模拟结果

    Figure  4.  Numerical simulation temporal characteristics of OPA processes

    图  5  不同泵浦强度下的 OPA 模拟结果

    Figure  5.  Simulation temporal characteristics of OPA processes under different pump intensities

    图  6  实验方案图

    Figure  6.  Experimental layout

    图  7  信号光在OPA 过程中的特性

    Figure  7.  Signal characteristics of OPA processes

    图  8  信号光放大倍数随晶体转动角度的变化关系

    Figure  8.  Variation of signal magnification with external angle

    图  9  不同外部角下的光谱增益

    Figure  9.  Spectral gain at different external angles

    图  10  在不同初始信号光能量下OPA放大后的信号光强与泵浦强度的关系

    Figure  10.  Variation of signal intensity after OPA with pump intensity under different initial signal intensity

  • [1] Lindl J, Landen O, Edwards J, et al. Review of the national ignition campaign 2009-2012[J]. Physics of Plasmas, 2014, 21: 020501. doi: 10.1063/1.4865400
    [2] Fujioka S, Takabe H, Yamamoto N, et al. X-ray astronomy in the laboratory with a miniature compact object produced by laser-driven implosion[J]. Nature Physics, 2009, 5(11): 821-825. doi: 10.1038/nphys1402
    [3] Weber S, Bechet S, Borneis S, et al. P3: an installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines[J]. Matter and Radiation at Extremes, 2017, 2(4): 149-176. doi: 10.1016/j.mre.2017.03.003
    [4] Spaeth M L, Manes K R, Kalantar D H, et al. Description of the NIF laser[J]. Fusion Science and Technology, 2016, 69(1): 25-145. doi: 10.13182/FST15-144
    [5] Zheng Wanguo, Wei Xiaofeng, Zhu Qihua, et al. Laser performance of the SG-III laser facility[J]. High Power Laser Science and Engineering, 2016, 4: 03000e21.
    [6] Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
    [7] Gao Yanqi, Cui Yong, Ji Lailin, et al. Development of low-coherence high-power laser drivers for inertial confinement fusion[J]. Matter and Radiation at Extremes, 2020, 5: 065201. doi: 10.1063/5.0009319
    [8] Baumgartner R, Byer R. Optical parametric amplification[J]. IEEE Journal of Quantum Electronics, 1979, 15(6): 432-444. doi: 10.1109/JQE.1979.1070043
    [9] Dorrer C, Hill E M, Zuegel J D. High-energy parametric amplification of spectrally incoherent broadband pulses[J]. Optics Express, 2020, 28(1): 451-471. doi: 10.1364/OE.28.000451
    [10] Lozhkarev V V, Freidman G I, Ginzburg V N, et al. Study of broadband optical parametric chirped pulse amplification in a DKDP crystal pumped by the second harmonic of a Nd: YLF laser[J]. Laser Physics, 2005, 15(9): 1319-1333.
    [11] 孙美智, 毕群玉, 张福领, 等. YCOB晶体非共线相位匹配技术研究[J]. 光学学报, 2011, 31:0119001 doi: 10.3788/AOS201131.0119001

    Sun Meizhi, Bi Qunyu, Zhang Fuling, et al. Study on noncollinear phase matching in YCOB crystal[J]. Acta Optica Sinica, 2011, 31: 0119001 doi: 10.3788/AOS201131.0119001
    [12] 王杰, 姚建铨, 李喜福, 等. 非线性晶体三波互作用允许参量的修正计算[J]. 光学学报, 2001, 21(2):139-141 doi: 10.3321/j.issn:0253-2239.2001.02.003

    Wang Jie, Yao Jianquan, Li Xifu, et al. Amendatory calculation of the acceptance parameters in three-wave interactions[J]. Acta Optica Sinica, 2001, 21(2): 139-141 doi: 10.3321/j.issn:0253-2239.2001.02.003
    [13] 刘军, 魏晓峰, 黄小军, 等. BBO, LBO, KDP晶体光参量啁啾脉冲放大特性的比较研究[J]. 强激光与粒子束, 2003, 15(6):555-558

    Liu Jun, Wei Xiaofeng, Huang Xiaojuan, et al. Study and comparison on properties of optical parametric chirped pulse amplification of BBO, LBO and KDP[J]. High Power Laser and Particle Beams, 2003, 15(6): 555-558
    [14] Dorrer C. Statistical analysis of incoherent pulse shaping[J]. Optics Express, 2009, 17(5): 3341-3352. doi: 10.1364/OE.17.003341
    [15] Ji Lailin, Zhao Xiaohui, Liu Dong, et al. High-efficiency second-harmonic generation of low-temporal-coherent light pulse[J]. Optics Letters, 2019, 44(17): 4359-4362. doi: 10.1364/OL.44.004359
    [16] 张淳耀, 赵晓晖, 高妍琦, 等. 近红外波段宽带时间低相干光参量放大技术[J]. 强激光与粒子束, 2022, 34:031012 doi: 10.11884/HPLPB202234.210267

    Zhang Chunyao, Zhao Xiaohui, Gao Yanqi, et al. Near-infrared broadband low-temporal-coherence optical parametric amplification[J]. High Power Laser and Particle Beams, 2022, 34: 031012 doi: 10.11884/HPLPB202234.210267
  • 加载中
图(10)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  11
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-07
  • 修回日期:  2025-06-16
  • 录用日期:  2025-05-16
  • 网络出版日期:  2025-07-05

目录

    /

    返回文章
    返回