留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于物理信息驱动傅里叶神经算子的Vlasov方程求解方法

付伟 王川 张天爵 周洪吉

付伟, 王川, 张天爵, 等. 基于物理信息驱动傅里叶神经算子的Vlasov方程求解方法[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250071
引用本文: 付伟, 王川, 张天爵, 等. 基于物理信息驱动傅里叶神经算子的Vlasov方程求解方法[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250071
Fu Wei, Wang Chuan, Zhang Tianjue, et al. Method for solving Vlasov equation based on physical informed Fourier neural operator[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250071
Citation: Fu Wei, Wang Chuan, Zhang Tianjue, et al. Method for solving Vlasov equation based on physical informed Fourier neural operator[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250071

基于物理信息驱动傅里叶神经算子的Vlasov方程求解方法

doi: 10.11884/HPLPB202537.250071
基金项目: 中国原子能科学研究院英才基金项目(YC232505000404)
详细信息
    作者简介:

    付 伟,fuwei@ciae.ac.cn

  • 中图分类号: O534.2

Method for solving Vlasov equation based on physical informed Fourier neural operator

  • 摘要: Vlasov方程是研究等离子体物理的重要方程,在高温、完全电离且忽略库伦碰撞的情况下,其数值求解方法主要有欧拉类方法和拉格朗日类方法。考虑传统数值求解方法在高精度网格条件下计算资源快速增长、维度灾难等问题,采用了基于物理信息驱动的傅里叶神经算子(Physics-informed Fourier Neural Operator, PFNO)对Vlasov方程进行求解。该方法将傅里叶神经算子高维函数映射能力与Vlasov方程物理约束结合,构建了数据-物理信息驱动的深度学习框架,可提升模型在稀疏数据条件下的泛化性能,同时具有网格无关性特征。数值实验表明,该方法在保证求解精度的同时,相比传统有限元法和谱方法计算效率提升1~2个数量级,且能并行处理大批量数据。该研究为高维Vlasov动力学方程的求解提供了新思路,在惯性约束聚变、空间等离子体模拟等领域具有一定应用潜力。
  • 图  1  物理信息驱动的傅里叶神经算子网络模型

    Figure  1.  Physics informed Fourier neural operator network model

    图  2  朗道阻尼训练集的损失函数随迭代步的变化

    Figure  2.  The training loss of the Landau damping dataset as a function of iteration steps

    图  3  线性朗道阻尼中的电场能量密度衰减

    Figure  3.  Decay of the electric field energy density in linear Landau damping

    图  4  非线性朗道阻尼中等离子体电场能量密度随时间的演化

    Figure  4.  The temporal evolution of plasma electric field energy density in nonlinear Landau damping

    图  5  双束不稳定性训练集的训练损失随迭代步的变化

    Figure  5.  The training loss of the two-stream instability dataset as a function of iteration steps

    图  6  双束不稳定性分布函数的预测结果

    Figure  6.  Prediction results of two-stream instability

    图  7  双束不稳定性中的电场能量密度变化过程

    Figure  7.  The evolution of electric field energy density in Two-Stream instability

    表  1  模型与训练参数

    Table  1.   Model and training parameters

    fully connected layer hidden layers mode number
    in x direction
    mode number
    in v direction
    learning rate
    128 5×32 12 12 0.001
    下载: 导出CSV

    表  2  模型与训练参数

    Table  2.   Model and training parameters

    fully connected layer hidden layers mode number in x direction mode number in v direction learning rate
    128 5×64 12 12 0.0005
    下载: 导出CSV

    表  3  PFNO计算精度与耗时对比

    Table  3.   Comparison of PFNO calculation accuracy and time consumption

    resolution number of parameters PFNO L2 error/% time consumption
    by Gkey II/s
    time consumption
    by PFNO/s
    speed up
    128×128 67 M 9.09 450 3.27 137.61
    256×256 67 M 8.74 1700 11.24 151.25
    128×128 113 M 6.16 450 4.14 108.70
    256×256 113 M 6.02 1700 14.63 116.20
    下载: 导出CSV
  • [1] Chen, Francis F. Introduction to plasma physics and controlled fusion [M]. Vol. 1. New York: Plenum Press, 1984.
    [2] Bardos, C, Anne N. A Vlasov equation with Dirac potential used in fusion plasmas [J]. Journal of Mathematical Physics 53, 2012, no. 11.
    [3] Palmroth, M. , Ganse, U. , et al. Vlasov methods in space physics and astrophysics [J]. Living Reviews in Computational Astrophysics, 2018, 4(1), p. 1.
    [4] Bertrand P, Albrecht-Marc M, et al. Vlasov models for laser-plasma interaction [J]. Transport Theory and Statistical Physics. 2005 Jan 1;34(1-2): 103-26.
    [5] Fijalkow, Eric. A numerical solution to the Vlasov equation [J]. Computer Physics Communications, 1999, 116. 2-3: 319-328.
    [6] Birdsall, C. K, et al. Plasma physics via computer simulation [M]. 2018.
    [7] Murawski K, Numerical solutions of magnetohydrodynamic equations [J]. Bulletin of the Polish Academy of Sciences-Technical Sciences, 2011, 59(2): 219-226.
    [8] Sonnendrücker, Eric, et al. The semi-Lagrangian method for the numerical resolution of the Vlasov equation[J]. Journal of Computational Physics, 1999, 149(2): 201-220. doi: 10.1006/jcph.1998.6148
    [9] Roska, Tamás, Leon O. Chua, et al. Simulating nonlinear waves and partial differential equations via CNN. I. Basic techniques[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2002(10): 807-815.
    [10] Kovachki, Nikola, Zongyi Li, et al. Neural operator: learning maps between function spaces with applications to PDES[J]. Journal of Machine Learning Research, 2023, 24(89): 1-97.
    [11] Raissi, M. , Paris P. , et al. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations [J]. Journal of Computational Physics, 2019, 378 686-707.
    [12] Zhang, Pan, et al. A Maxwell's equations based deep learning method for time domain electromagnetic simulations[J]. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2021, 6: 35-40. doi: 10.1109/JMMCT.2021.3057793
    [13] Eivazi, Hamidreza, Mojtaba Tahani, et al. Physics-informed neural networks for solving Reynolds-averaged Navier–Stokes equations[J]. Physics of Fluids, 2022(7): 34.
    [14] Raissi, Maziar. Deep hidden physics models: deep learning of nonlinear partial differential equations[J]. Journal of Machine Learning Research, 2018(25): 1-24.
    [15] Qin, Yilan, Jiayu Ma, et al. Data-driven modeling of Landau damping by physics-informed neural networks. Physical Review Research, 2023, no. 3: 033079.
    [16] Juno, James, Ammar Hakim, et al. Discontinuous Galerkin algorithms for fully kinetic plasmas. Journal of Computational Physics 2018, 353: 110-147.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-10
  • 修回日期:  2025-08-21
  • 录用日期:  2025-08-02
  • 网络出版日期:  2025-09-01

目录

    /

    返回文章
    返回