留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3 μm新型超低损耗单模单偏振空芯反谐振光纤的设计

谢兆鑫 盖浩杰 王学军

谢兆鑫, 盖浩杰, 王学军. 3 μm新型超低损耗单模单偏振空芯反谐振光纤的设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250072
引用本文: 谢兆鑫, 盖浩杰, 王学军. 3 μm新型超低损耗单模单偏振空芯反谐振光纤的设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250072
Xie Zhaoxin, Ge Haojie, Wang Xuejun. Design of novel ultra-low loss single-mode single-polarization hollow-core anti-resonant fiber at 3 μm wavelength[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250072
Citation: Xie Zhaoxin, Ge Haojie, Wang Xuejun. Design of novel ultra-low loss single-mode single-polarization hollow-core anti-resonant fiber at 3 μm wavelength[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250072

3 μm新型超低损耗单模单偏振空芯反谐振光纤的设计

doi: 10.11884/HPLPB202537.250072
基金项目: 山西省重点实验室开放基金项目(CICIP2022001);石家庄铁道大学引进人才科研启动项目(309000900110011)
详细信息
    作者简介:

    谢兆鑫,zhaoxinxie@stdu.edu.cn

  • 中图分类号: TN929.11

Design of novel ultra-low loss single-mode single-polarization hollow-core anti-resonant fiber at 3 μm wavelength

  • 摘要: 为了激光在中红外波段实现更低损耗、单模、单偏振的稳定传输,设计了一种具有双包层嵌套式结构的抗弯曲空芯反谐振光纤构型。利用有限元法优化了其结构参数,在模拟仿真上证明了光纤的宽带低损耗单偏振的传输特性。该光纤在波长2.9~3.3 μm范围内限制损耗小于0.01 dB/km,高阶模抑制比大于1 000,在3 μm波长处的限制损耗低至0.0014 dB/km。通过引入不同的嵌套管厚度破坏了光纤结构的对称性,理论研究了光纤的单偏振特性,在波长2.996~3.004 μm内,偏振消光比大于10 000,具有极其稳定的单偏振效果。此外,根据理论分析表明该光纤还具有良好的抗弯曲性能,当y方向的弯曲半径大于5 cm时,仍能保证激光单偏振传输,弯曲损耗小于3.11 dB/km。所设计的空芯反谐振光纤构型在中红外光纤激光器等领域具有巨大的应用潜力。
  • 图  1  HC-ARF截面图

    Figure  1.  The cross-section of HC-ARF

    图  2  外包层圆管直径对限制损耗和单模特性的影响

    Figure  2.  The impact of the outer cladding tube diameter on confinement loss and single-mode characteristics

    图  3  椭圆管对光纤损耗和单模特性的影响

    Figure  3.  The impact of elliptical tubes on fiber loss and single-mode characteristics

    图  4  嵌套谐振管和玻璃棒对损耗和单模特性的影响

    Figure  4.  The impact of nested resonant tubes and glass rods on loss and single-mode characteristics

    图  5  不同波长下的基模限制损耗和单模特性趋势

    Figure  5.  The trends of fundamental mode confinement loss and single-mode characteristics under different wavelengths

    图  6  玻璃棒厚度t2对光纤单偏振特性的影响

    Figure  6.  The impact of the glass rod thickness (t2) on the single polarization characteristic

    图  7  t2=2.93 μm时基模电场分布图

    Figure  7.  Electric field distribution of the fundamental mode when t2=2.93 μm

    图  8  光纤的PER和限制损耗特性随波长的变化

    Figure  8.  The PER and confinement loss characteristics of fiber vary with wavelength

    图  9  弯曲半径对损耗的影响

    Figure  9.  The effect of bending radius on Loss

    图  10  沿x方向弯曲且Rb=4 cm时的基模电场分布图

    Figure  10.  The electric field distribution of the fundamental mode when bending along the x-axis with Rb=4 cm

    图  11  沿y正方向弯曲且Rb=6 cm时的基模电场分布图

    Figure  11.  The electric field distribution of the fundamental mode when bending in the positive direction along the y-axis with Rb=6 cm

    图  12  沿y负方向弯曲且Rb=9 cm时的基模电场分布图

    Figure  12.  The electric field distribution of the fundamental mode when bending in the negative direction along the y-axis with Rb=9 cm

    表  1  不同 HC-ARF性能的比较

    Table  1.   Comparison of the performances of different HC-ARFs

    Ref. wavelength/μm loss/(dB/km) bend loss/(dB/km) PER
    [1] 2 20.000 100@6 cm >500
    [19] 3 0.520 100@6.5 cm
    [21] 3~5 8.000
    [23] 3 4.000 690@30 cm
    This work 3 0.013 0.1@12 cm 91 075
    下载: 导出CSV
  • [1] Herring H, Mahfuz M A, Habib M S. Single-polarization and single-mode hybrid hollow-core anti-resonant fiber design at 2 μm[J]. IEEE Photonics Journal, 2024, 16: 7100806.
    [2] Fu Q, Jasion G T, Xu L, et al. Advances in mid-infrared low-loss hollow-core anti-resonant fibers[C]//Proceedings of 2024 24th International Conference on Transparent Optical Networks (ICTON). 2024: 1-5.
    [3] 杨俊彦, 公发全, 刘锐, 等. 中红外激光在光电对抗领域的应用及进展[J]. 飞控与探测, 2020, 3(6):34-42

    Yang Junyan, Gong Faquan, Liu Rui, et al. Application and progress of mid-infrared laser in optoelectronic countermeasure field[J]. Fight Control & Detection, 2020, 3(6): 34-42
    [4] 申玉, 宗楠, 温雅, 等. 新颖的中红外6.45 μm激光医疗应用及光源研究进展(特邀)[J]. 光电技术应用, 2022, 37(1):10-18 doi: 10.3969/j.issn.1673-1255.2022.01.003

    Shen Yu, Zong Nan, Wen Ya, et al. Review on novel 6.45 μm laser scalpel, the medical applications and laser sources (invited)[J]. Electro-Optic Technology Application, 2022, 37(1): 10-18 doi: 10.3969/j.issn.1673-1255.2022.01.003
    [5] Liu Wei, Zheng Yu, Wang Zhe, et al. Ultrasensitive exhaled breath sensors based on anti-resonant hollow core fiber with in situ grown ZnO-Bi2O3[J]. Advanced Materials Interfaces, 2021, 8: 2001978. doi: 10.1002/admi.202001978
    [6] Humbert G, Knight J C, Bouwmans G, et al. Hollow core photonic crystal fibers for beam delivery[J]. Optics Express, 2004, 12(8): 1477-1484. doi: 10.1364/OPEX.12.001477
    [7] Urich A, Maier R R J, Yu Fei, et al. Flexible delivery of Er: YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures[J]. Biomedical Optics Express, 2013, 4(2): 193-205. doi: 10.1364/BOE.4.000193
    [8] Debord B, Amsanpally A, Chafer M, et al. Ultralow transmission loss in inhibited-coupling guiding hollow fibers[J]. Optica, 2017, 4(2): 209-217. doi: 10.1364/OPTICA.4.000209
    [9] Mangan B J, Farr L, Langford A, et al. Low loss (1.7 dB/km) hollow core photonic bandgap fiber[C]//Proceedings of Optical Fiber Communication Conference. 2004: 3.
    [10] Roberts P J, Williams D P, Mangan B J, et al. Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround[J]. Optics Express, 2005, 13(20): 8277-8285. doi: 10.1364/OPEX.13.008277
    [11] Litchinitser N M, Abeeluck A K, Headley C, et al. Antiresonant reflecting photonic crystal optical waveguides[J]. Optics Letters, 2002, 27(18): 1592-1594. doi: 10.1364/OL.27.001592
    [12] Archambault J L, Black R J, Lacroix S, et al. Loss calculations for antiresonant waveguides[J]. Journal of Lightwave Technology, 1993, 11(3): 416-423. doi: 10.1109/50.219574
    [13] Wang Zhuo, Tu Jiajing, Liu Zhengyong, et al. Design of weakly coupled two-mode hollow-core antiresonant fiber with low loss[J]. Journal of Lightwave Technology, 2020, 38(4): 864-874. doi: 10.1109/JLT.2019.2949817
    [14] Yan Shibo, Lou Shuqin, Zhang Wan, et al. Single-polarization single-mode double-ring hollow-core anti-resonant fiber[J]. Optics Express, 2018, 26(24): 31160-31171. doi: 10.1364/OE.26.031160
    [15] 罗素. 低损中红外空芯反谐振光纤的设计与仿真[D]. 成都: 电子科技大学, 2021

    Luo Su. Design and simulation on low-loss mid-infrared hollow core antiresonant optical fibers[D]. Chengdu: School of Information and Communication Engineering, 2021
    [16] 严世博. 新型空芯反谐振光纤的设计及其应用研究[D]. 北京: 北京交通大学, 2021

    Yan Shibo. Designs and applications of novel hollow-core anti-resonant fiber[D]. Beijing: Beijing Jiaotong University, 2021
    [17] Zhu Xiushan, Peyghambarian N. High-power ZBLAN glass fiber lasers: review and prospect[J]. Advances in Optoelectronics, 2010, 2010: 501956.
    [18] Lousteau J, Boetti N G, Negro D, et al. Photonic glasses for IR and mid-IR spectral range[C]//Proceedings of International Conference on Space Optics—ICSO 2012. 2012: 792-797.
    [19] 张家强, 张敏, 尹金德, 等. 3 μm波段低损耗抗弯曲反谐振空芯光纤设计[J]. 激光与光电子学进展, 2021, 58:1723001

    Zhang Jiaqiang, Zhang Min, Yin Jinde, et al. Design of low loss hollow-core anti-resonance fiber for 3 μm spectral region[J]. Laser & Optoelectronics Progress, 2021, 58: 1723001
    [20] 朱宽, 张鑫, 鲁文举, 等. 空芯反谐振光纤2.60~4.35 μm中红外激光传输及损耗表征[J]. 激光与光电子学进展, 2022, 59:0306004

    Zhu Kuan, Zhang Xin, Lu Wenju, et al. Propagation and attenuation characterization of hollow-core anti-resonant fiber at 2.60-4.35 μm[J]. Laser & Optoelectronics Progress, 2022, 59: 0306004
    [21] Zhang Hao, Chang Yanjie, Xu Yantao, et al. Design and fabrication of a chalcogenide hollow-core anti-resonant fiber for mid-infrared applications[J]. Optics Express, 2023, 31(5): 7659-7670. doi: 10.1364/OE.482941
    [22] Zhu Jun, Feng Shaohua, Liu Changzhen, et al. Design and fabrication of a tellurite hollow-core anti-resonant fiber for mid-infrared applications[J]. Optics Express, 2024, 32(8): 14067-14077. doi: 10.1364/OE.519034
    [23] 申翰阳, 冉杨凯, 张傲, 等. 中红外低损耗大模场空芯反谐振光纤的研究[J]. 光电子·激光, 2025, 36(4):360-368

    Shen Hanyang, Ran Yangkai, Zhang Ao, et al. Research on mid-infrared low-loss large-mode-area hollow core anti-resonant fiber[J]. Journal of Optoelectronics·Laser, 2025, 36(4): 360-368
    [24] Akosman A E, Ordu M. Nested compound negative curvature hollow-core fiber for single-mode operation in the infrared region[J]. Optics Communications, 2021, 497: 127194. doi: 10.1016/j.optcom.2021.127194
    [25] Habib M S, Bang O, Bache M. Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements[J]. Optics Express, 2016, 24(8): 8429-8436. doi: 10.1364/OE.24.008429
    [26] Gong Yujie, Meng Yichao. Single-polarization single-mode broadband ultra-low loss hollow-core anti-resonant fiber with nested double C-type cladding tubes[J]. Optics Communications, 2024, 552: 130062. doi: 10.1016/j.optcom.2023.130062
    [27] Chen Junle, Peng Luoyan, Shi Yongwei, et al. Nested hollow-core anti-resonant fiber with elliptical cladding for 2 µm laser transmission[J]. Optics Express, 2024, 32(16): 28148-28159. doi: 10.1364/OE.528511
    [28] Kaushalram A, Suchita, Bhardwaj A. Enhancing single-mode guidance using avoided crossings in anti-resonant hollow-core fibers with five nested cladding tubes[J]. Optics Communications, 2024, 551: 130036. doi: 10.1016/j.optcom.2023.130036
    [29] Zhao Xingtao, Li Zhiwei, Cheng Yufeng, et al. Ultra-low-loss anti-resonant hollow-core fiber with nested concentric circle structures[J]. Results in Physics, 2022, 43: 106113. doi: 10.1016/j.rinp.2022.106113
    [30] Zhao Xingtao, Xiang Jingliang, Wu Xuanrui, et al. High birefringence, single-polarization, low loss hollow-core anti-resonant fibers[J]. Optics Express, 2021, 29(22): 36273-36286. doi: 10.1364/OE.439550
    [31] Wei Shaocong, Zhang Yuheng, Wu Tong, et al. Broadband birefringence hollow-core anti-resonant optical fiber with elliptical air holes[J]. Optics Communications, 2023, 527: 128976. doi: 10.1016/j.optcom.2022.128976
    [32] Yan Shibo, Lian Zhenggang, Lou Shuqin, et al. Single-polarization single-mode hollow-core negative-curvature fiber with silicon-coated cladding[J]. Optical and Quantum Electronics, 2020, 52: 269. doi: 10.1007/s11082-020-02383-9
    [33] Poletti F. Nested antiresonant nodeless hollow core fiber[J]. Optics Express, 2014, 22(20): 23807-23828. doi: 10.1364/OE.22.023807
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  13
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-13
  • 修回日期:  2025-06-16
  • 录用日期:  2025-06-10
  • 网络出版日期:  2025-06-21

目录

    /

    返回文章
    返回