Research on high power microwave pulse damage threshold of low-noise amplifiers based on automated testing system
-
摘要: 高功率微波试验是研究半导体器件在强电磁环境下损伤效应的重要手段。然而,传统试验方法主要依赖人工操作,难以精准测定器件的失效阈值,影响实验的重复性和可靠性。为提升测试精度并减少人为误差,基于半导体器件与高功率微波相互作用机制,设计了一套高功率微波脉冲自动化试验系统及标准化试验流程。以典型商用低噪声放大器为研究对象,系统评估其在高功率微波脉冲作用下的损伤阈值。通过同步测量器件的时域响应、频域特性及电流变化,并结合失效前后的参数对比分析,精确确定器件的失效阈值点。进一步地针对失效器件的一次、二次及三次损伤过程进行系统评估,并结合微观物理机制探讨损伤累积效应对器件关键参数的影响,以揭示失效机理。Abstract: High power microwave (HPM) testing is a critical method for investigating the damage effects of semiconductor devices in strong electromagnetic environments. However, traditional testing methods rely primarily on manual operation, making it difficult to accurately determine device failure thresholds and affecting the repeatability and reliability of experiments. To enhance testing accuracy and reduce human error, this study designs an automated HPM pulse testing system and standardized testing procedure based on the damage mechanisms of semiconductor devices. A typical commercial low-noise amplifier (LNA) is selected as the research subject, and its damage threshold under HPM pulses is systematically evaluated. By synchronously measuring the device's time-domain response, frequency characteristics, and current variations, and comparing parameters before and after failure, the failure threshold is precisely identified. Furthermore, a systematic assessment of primary, secondary, and tertiary damage stages of the failed device is conducted, with an analysis of the cumulative damage effects on key device parameters based on microscopic physical mechanisms to reveal the failure mechanisms. The proposed system and evaluation method can be applied to the reliability assessment of semiconductor devices in HPM environments, providing experimental support for device robustness analysis and optimization.
-
表 1 器件的第一次失效的阈值点
Table 1. The threshold point of the device's first failure
pulse width/ms duty cycle inject power/dBm pulse number ΔI/mA ΔS21/dB 4 50% 34.44 560 4.69 29.30 4 50% 34.67 220 4.60 29.23 4 50% 34.86 125 4.67 29.89 4 50% 35.55 38 4.76 30.34 4 $\ll $ 1 37.07 2947 4.64 34.70 4 $\ll $ 1 37.21 50 4.63 33.94 4 $\ll $ 1 37.43 1 4.50 35.59 20 50% 34.2 120 4.73 29.99 20 50% 34.35 45 4.68 29.37 20 50% 34.66 21 4.70 29.71 20 50% 34.99 9 4.70 29.39 20 $ \ll $ 1 35.72 1930 4.66 34.60 20 $\ll $ 1 35.87 12 4.74 37.19 20 $\ll $ 1 36.25 1 4.59 37.47 表 2 失效器件与正常器件各引脚间的阻性差异特征
Table 2. Resistance difference characteristics between the normal and failed devices across various pins
current/mA RFIN-VCC/Ω RFOUT-VCC/Ω RFIN-GND1/Ω RFOUT-GND1/Ω RFIN-GND2/Ω RFOUT-GND2/Ω 21 750 125 684.8 394.74 895 312.5 26 337.2 125 3.42 394.74 227.8 312.5 16 1.882 125 734.4 394.74 934.3 312.5 40 2.665 125 13.54 394.74 229.6 312.5 -
[1] 蒙林, 李天明, 李浩. 国外高功率微波发展综述[J]. 真空电子技术, 2015(2):8-12,1Meng Lin, Li Tianming, Li Hao. Developments of high power microwave abroad[J]. Vacuum Electronics, 2015(2): 8-12,1 [2] 范菊平. 典型半导体器件的高功率微波效应研究[D]. 西安: 西安电子科技大学, 2014Fan Juping. Study on the high power effects on typical semiconductot devices[D]. Xi’an: Xidian University, 2014 [3] 陈凯柏, 高敏, 周晓东, 等. 调频连续波引信高功率微波前门耦合效应研究[J]. 兵工学报, 2020, 41(5):881-889 doi: 10.3969/j.issn.1000-1093.2020.05.007Chen Kaibai, Gao Min, Zhou Xiaodong, et al. Research on coupling effect of high-power microwave front-gate in FMCW fuze[J]. Acta Armamentarii, 2020, 41(5): 881-889 doi: 10.3969/j.issn.1000-1093.2020.05.007 [4] 张存波. 微波脉冲对低噪声放大器的效应研究[D]. 长沙: 国防科学技术大学, 2015Zhang Cunbo. Effects on low noise amplifiers with microwave pulses[D]. Changsha: National University of Defense Technology, 2015 [5] Brasile J P, Samama N. Electronic components breakdown and disturbance models[C]//Proceedings of RADECS 97. Fourth European Conference on Radiation and its Effects on Components and Systems (Cat. 97TH8294). 1997: 182-188. [6] Telliez S, Brasile J P, Samama N. MESFET destruction model and experimental validation[C]//Proceedings of RADECS 97. Fourth European Conference on Radiation and its Effects on Components and Systems (Cat. 97TH8294). 1997: 170-173. [7] Zhou Liang, Zhang Shuo, Yin Wenyan, et al. Investigating a thermal breakdown model and experiments on a silicon-based low-noise amplifier under high-power microwave pulses[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(2): 487-493. doi: 10.1109/TEMC.2016.2514441 [8] Chen Xiang, Zhou Liang, Yin Wenyan, et al. Experiments and comparisons of power to failure for SiGe-based low-noise amplifiers under high-power microwave pulses[C]//Proceedings of 2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity (EMC, SI & PI). 2018. [9] Yu Xinhai, Ma Zhenyang, Chai Changchun, et al. Nonlinear and permanent degradation of GaAs-based low-noise amplifier under electromagnetic pulse injection[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(1): 101-107. doi: 10.1109/TEMC.2018.2888520 [10] Joh J, Gao Feng, Palacios T, et al. A model for the critical voltage for electrical degradation of GaN high electron mobility transistors[C]//Proceedings of 2009 Reliability of Compound Semiconductors Digest (ROCS). 2009: 3-6. [11] Zhang Yue, Zhou Liang, Mao Junfa. Inverse piezoelectric and trap effects with temperature dependence in AlGaN/GaN HEMTs under narrowband microwave pulses[J]. IEEE Transactions on Electromagnetic Compatibility, 2023, 65(3): 794-803. doi: 10.1109/TEMC.2023.3237318 [12] Zhang Cunbo, Wang Honggang, Zhang Jiande, et al. Experiment and simulation of the nonlinear and transient responses of GaAs PHEMT injected with microwave pulses[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(5): 1132-1138. doi: 10.1109/TEMC.2015.2410491 [13] Zhang Chi, Li Sheng, Lu Weihao, et al. Unclamped-inductive-switching behaviors of p-GaN HEMTs at cryogenic temperature[J]. IEEE Transactions on Power Electronics, 2022, 37(10): 11507-11510. doi: 10.1109/TPEL.2022.3173725 [14] Wang Lei, Chai Changchun, Zhao Tianlong, et al. Electromagnetic pulse induced failure analysis of GaN HEMT based power amplifier[J]. IEEE Transactions on Power Electronics, 2024, 39(1): 1492-1500. doi: 10.1109/TPEL.2023.3315726 [15] Lu Zhen, Zhou Liang, Hu Xiaofeng. Electro-thermal analysis of SiGe HBT under HPM injection[C]//Proceedings of 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO). 2020: 1-4. [16] Zhu Qing, Ma Xiaohua, Hou Bin, et al. Investigation of inverse piezoelectric effect and trap effect in AlGaN/GaN HEMTs under reverse-bias step stress at cryogenic temperature[J]. IEEE Access, 2020, 8: 35520-35528. doi: 10.1109/ACCESS.2020.2975118 [17] Huang Liyang, Mao Qidong, Xiang Zhongwu, et al. Destructive testing for reliability analysis at high-power microwave in GaAs/InGaP hetero-junction bipolar transistor[J]. IEEE Transactions on Device and Materials Reliability, 2023, 23(2): 198-203. doi: 10.1109/TDMR.2023.3246131 -