留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ELEC-TDNN:基于神经网络的电磁指纹识别

沈国茂 刘晋明 庞笑语 葛雨婷

沈国茂, 刘晋明, 庞笑语, 等. ELEC-TDNN:基于神经网络的电磁指纹识别[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250076
引用本文: 沈国茂, 刘晋明, 庞笑语, 等. ELEC-TDNN:基于神经网络的电磁指纹识别[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250076
Shen Guomao, Liu Jinming, Pang Xiaoyu, et al. ELEC-TDNN: electromagnetic fingerprint recognition based on neural network[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250076
Citation: Shen Guomao, Liu Jinming, Pang Xiaoyu, et al. ELEC-TDNN: electromagnetic fingerprint recognition based on neural network[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250076

ELEC-TDNN:基于神经网络的电磁指纹识别

doi: 10.11884/HPLPB202537.250076
详细信息
    作者简介:

    沈国茂,202311835011@jmu.edu.cn

    通讯作者:

    刘晋明,liujinming@jmu.edu.cn

  • 中图分类号: TN911

ELEC-TDNN: electromagnetic fingerprint recognition based on neural network

  • 摘要: 电子设备在运行过程中产生的电磁辐射可能导致信息泄漏,对信息安全构成威胁。电磁指纹识别方法在安全检测和漏源定位中发挥着重要作用。电磁指纹识别在实际检测中需要准确性和适应性,现有电磁指纹识别方法存在跨采样率适配性差、高频特征提取不足等缺陷。为此提出增强型神经网络架构ELEC-TDNN,模型融合了通道注意力机制与多尺度时序建模能力,设计引入局部信号增强层等模块,并基于自建双采样率(1.25 GHz/500 MHz)的USB设备电磁辐射数据集进行了实验。实验结果表明,ELEC-TDNN具有较高的精度,能够适应不同的采样率。在500 MHz采样率下,模型等错误率最低可达0.35%,在1.25 GHz高频场景下,等错误率为5.23%。
  • 图  1  ELEC-TDNN模型的结构和组成

    Figure  1.  Structure and components of the ELEC-TDNN model

    图  2  DFSMN层与LSE-Block层的结构图

    Figure  2.  Structure of DFSMN Block and LSE-Block

    图  3  信号采集示意图

    Figure  3.  Signal acquisition schematic

    图  4  原始信号和心跳包信号图

    Figure  4.  The original signal and heartbeat packet signal diagram

    表  1  不同模型在USB设备辐射信号数据集上的实验结果

    Table  1.   Experimental results of different models on the radiation signal dataset of USB devices

    model DFSMN×3 DFSMN×5 LSE-Block TCP EER/% MinDCF
    1.25 G 500 M 1.25 G 500 M
    ELEC-TDNN
    (this work)
    6.80 0.53 0.1421 0.0624
    5.23 0.53 0.1309 0.0448
    8.90 0.35 0.1361 0.0178
    7.85 2.32 0.1361 0.2339
    NeXt-TDNN 8.38 1.60 0.1309 0.0689
    ECAPA-TDNN 5.76 0.53 0.1257 0.0629
    下载: 导出CSV
  • [1] 秦鑫, 黄洁, 王建涛, 等. 基于无意调相特性的雷达辐射源个体识别[J]. 通信学报, 2020, 41(5): 104-111

    Qin Xin, Huang Jie, Wang Jiantao, et al. Radar emitter identification based on unintentional phase modulation on pulse characteristic[J]. Journal on Communications, 2020, 41(5): 104-111
    [2] 刘壮, 李陆, 杨轩. 计算机电磁指纹提取和识别技术研究[J]. 计算机时代, 2022(5): 19-24

    Liu Zhuang, Li Lu, Yang Xuan. Research on electromagnetic fingerprint extraction and identification technology of computer[J]. Computer Era, 2022(5): 19-24
    [3] Chen Yang, Liu Jinming, Mao Jian. Blind source separation of electromagnetic signals based on deep focusing U-Net[J]. Journal of Intelligent & Fuzzy Systems, 2023, 45(5): 9157-9167.
    [4] Chen Yang, Liu Jinming, Mao Jian, et al. Blind source separation of electromagnetic signals based on Swish-Tasnet[J]. Circuits, Systems, and Signal Processing, 2024, 43(10): 6620-6636. doi: 10.1007/s00034-024-02653-x
    [5] Chen Yang, Liu Jinming, Mao Jian. Blind source separation of electromagnetic signals based on one-dimensional U-Net[C]//Proceedings of the 2022 6th International Conference on Electronic Information Technology and Computer Engineering. 2023: 1597-1602.
    [6] Liu Taikang, Li Yongmei. Electromagnetic information leakage and countermeasure technique[M]. Singapore: Springer, 2019.
    [7] 刘波, 徐艳云, 黄伟庆, 等. 基于电磁指纹特征的USB行为识别方法研究[J]. 信息安全学报

    Liu Bo, Xu Yanyun, Huang Weiqing, et al. Study on USB behavior recognition method based on electromagnetic fingerprint features[J]. Journal of Cyber Security
    [8] 俞佳宝, 胡爱群, 朱长明, 等. 无线通信设备的射频指纹提取与识别方法[J]. 密码学报, 2016, 3(5): 433-446

    Yu Jiabao, Hu Aiqun, Zhu Changming, et al. RF fingerprinting extraction and identification of wireless communication devices[J]. Journal of Cryptologic Research, 2016, 3(5): 433-446
    [9] Ogli F K I. Study of the spectrum of side electromagnetic radiations of video interface DVI[C]//Proceedings of 2021 International Conference on Information Science and Communications Technologies. 2021: 1-3.
    [10] Soltanieh N, Norouzi Y, Yang Yang, et al. A review of radio frequency fingerprinting techniques[J]. IEEE Journal of Radio Frequency Identification, 2020, 4(3): 222-233. doi: 10.1109/JRFID.2020.2968369
    [11] Guo Shanzeng, White R E, Low M. A comparison study of radar emitter identification based on signal transients[C]//Proceedings of 2018 IEEE Radar Conference. 2018: 286-290.
    [12] Yang K, Kang J, Jang J, et al. Multimodal sparse representation-based classification scheme for RF fingerprinting[J]. IEEE Communications Letters, 2019, 23(5): 867-870. doi: 10.1109/LCOMM.2019.2905205
    [13] Rajendran S, Sun Zhi, Lin Feng, et al. Injecting reliable radio frequency fingerprints using metasurface for the internet of things[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 1896-1911. doi: 10.1109/TIFS.2020.3045318
    [14] Xu Jinlong, Wei Dong, Huang Weiqing. Polarization fingerprint: a novel physical-layer authentication in wireless IoT[C]//Proceedings of 2022 IEEE 23rd International Symposium on a World of Wireless, Mobile and Multimedia Networks. 2022: 434-443.
    [15] Senoussaoui M, Kenny P, Dehak N, et al. An i-vector extractor suitable for speaker recognition with both microphone and telephone speech[C]//Proceedings of Odyssey 2010: The Speaker and Language Recognition Workshop. 2010.
    [16] Dehak N, Kenny P J, Dehak R, et al. Front-end factor analysis for speaker verification[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(4): 788-798. doi: 10.1109/TASL.2010.2064307
    [17] Hinton G, Deng Li, Yu Dong, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6): 82-97. doi: 10.1109/MSP.2012.2205597
    [18] Guo Jiacheng, Sun Huiming, Qin Minghai, et al. A min-max optimization framework for multi-task deep neural network compression[C]//Proceedings of 2024 IEEE International Symposium on Circuits and Systems. 2024: 1-5.
    [19] Snyder D, Garcia-Romero D, Sell G, et al. X-vectors: robust DNN embeddings for speaker recognition[C]//Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. 2018: 5329-5333.
    [20] Snyder D, Garcia-Romero D, Sell G, et al. Speaker recognition for multi-speaker conversations using X-vectors[C]//Proceedings of 2019 IEEE International Conference on Acoustics, Speech and Signal Processing. 2019: 5796-5800.
    [21] Desplanques B, Thienpondt J, Demuynck K. ECAPA-TDNN: emphasized channel attention, propagation and aggregation in TDNN based speaker verification[C]//Proceedings of the 21st Annual Conference of the International Speech Communication Association. 2020: 3830-3834.
    [22] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
    [23] Wang Rui, Wei Zhihua, Duan Haoran, et al. EfficientTDNN: efficient architecture search for speaker recognition[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2022, 30: 2267-2279. doi: 10.1109/TASLP.2022.3182856
    [24] Heo H J, Shin U H, Lee R, et al. NeXt-TDNN: modernizing multi-scale temporal convolution backbone for speaker verification[C]//Proceedings of 2024 IEEE International Conference on Acoustics, Speech and Signal Processing. 2024: 11186-11190.
    [25] Kingma D P, Ba J. Adam: a method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations. 2015.
    [26] Zhang Shiliang, Lei Ming, Yan Zhijie, et al. Deep-FSMN for large vocabulary continuous speech recognition[C]//Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. 2018: 5869-5873.
    [27] Bai Shaojie, Kolter J Z, Koltun V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[DB/OL]. arXiv preprint arXiv: 1803.01271, 2018.
    [28] Hu Jie, Shen Li, Sun Gang. Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018: 7132-7141.
    [29] Okabe K, Koshinaka T, Shinoda K. Attentive statistics pooling for deep speaker embedding[C]//Proceedings of the 19th Annual Conference of the International Speech Communication Association. 2018: 2252-2256.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  38
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-15
  • 修回日期:  2025-06-20
  • 录用日期:  2025-06-20
  • 网络出版日期:  2025-07-22

目录

    /

    返回文章
    返回