留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Q波段低磁场高效率相对论返波管的模拟仿真

张潜 吴洋 李士锋

张潜, 吴洋, 李士锋. Q波段低磁场高效率相对论返波管的模拟仿真[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250089
引用本文: 张潜, 吴洋, 李士锋. Q波段低磁场高效率相对论返波管的模拟仿真[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250089
Zhang Qian, Wu Yang, Li Shifeng. Simulation of high-efficiency relativistic backward wave oscillator in Q-band with low magnetic field[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250089
Citation: Zhang Qian, Wu Yang, Li Shifeng. Simulation of high-efficiency relativistic backward wave oscillator in Q-band with low magnetic field[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250089

Q波段低磁场高效率相对论返波管的模拟仿真

doi: 10.11884/HPLPB202537.250089
基金项目: 国家自然科学基金项目(62301519)
详细信息
    作者简介:

    张 潜,qianzhang675@gmail.com

  • 中图分类号: TN125+.1

Simulation of high-efficiency relativistic backward wave oscillator in Q-band with low magnetic field

  • 摘要: 为了实现高功率微波源的小型化,提出了一种Q波段低磁场工作的高效率相对论返波管,其结构主要由谐振腔反射器与两段周期性慢波结构组成,慢波结构采用同轴结构,基于同轴结构特性可以选取合适的内径,提高功率容量的同时降低了器件尺寸小带来的空间电荷效应。通过优化仿真,研究了不同的二极管电压、引导磁场对于微波输出功率的影响,同时通过调节阴阳极间距AK获得了最佳电子束阻抗。最终在引导磁场B=0.9 T、二极管电压为400 kV、束流3kA的条件下,获得了470 MW的微波输出功率,效率约为39.1%,微波的中心频率为45 GHz。
  • 图  1  慢波结构示意图

    Figure  1.  Schematic diagram of slow wave structure

    图  2  色散曲线示意图

    Figure  2.  Dispersion curve of slow wave structure

    图  3  反射器对准TEM模式反射电场示意图

    Figure  3.  Reflection on TEM mode

    图  4  谐振腔反射器反射系数曲线

    Figure  4.  Reflection coefficient curve of resonant reflector

    图  5  Q 波段低磁场 RBWO 模拟模型

    Figure  5.  Q-band low magnetic field high efficiency RBWO simulation model

    图  6  AK对于微波输出的影响

    Figure  6.  Relationship between output power and efficiency with AK

    图  7  输出功率与效率随引导磁场强度的变化

    Figure  7.  Output power and efficiency change with guide magnetic field

    图  8  调制电流分布与电子相空间图

    Figure  8.  Modulated current distribution and electron phase space plot

    图  9  粒子模拟结果

    Figure  9.  Particle simulation results

  • [1] 王荟达. C波段低磁场高效率相对论返波管研究[D]. 北京: 清华大学, 2021

    Wang Huida. Research on a C-band high-efficiency relativistic backward-wave oscillator with low-magnetic-field operation[D]. Beijing: Tsinghua University, 2021
    [2] 肖仁珍. 相对论返波管研究进展[J]. 现代应用物理, 2022, 13:20101 doi: 10.12061/j.issn.2095-6223.2022.020101

    Xiao Renzhen. Research progress of relativistic backward wave oscillator[J]. Modern Applied Physics, 2022, 13: 20101 doi: 10.12061/j.issn.2095-6223.2022.020101
    [3] 朱俊, 舒挺, 张军, 等. 低磁场过模慢波结构型高功率毫米波发生器的改进[J]. 强激光与粒子束, 2011, 23(11):3051-3054 doi: 10.3788/HPLPB20112311.3051

    Zhu Jun, Shu Ting, Zhang Jun, et al. Improvement of high power overmoded millimeter-wave generator operating at low magnetic field[J]. High Power Laser and Particle Beams, 2011, 23(11): 3051-3054 doi: 10.3788/HPLPB20112311.3051
    [4] 周传明, 刘国治、刘永贵, 等. 高功率微波源[M]. 北京: 原子能出版社, 2007

    Zhou Chuanming, Liu Guozhi, Liu Yonggui, et al. High-power microwave sources[M]. Beijing: Atomic Energy Press, 2007
    [5] Fan Zhiqiang, Sun Jun, Cao Yibing, et al. An oversized Ku-band Cerenkov oscillator with pure TM01 mode output[J]. Physics of Plasmas, 2022, 29: 063103. doi: 10.1063/5.0093129
    [6] Ge Xingjun, Zhang Peng, Zhao Chenyu, et al. A high-efficiency L-band coaxial three-period relativistic Cherenkov oscillator[J]. Scientific Reports, 2019, 9: 12244. doi: 10.1038/s41598-019-47496-8
    [7] Dang Fangchao, Zhang Xiaoping, Zhong Huihuang, et al. Simulation investigation of a Ku-band radial line oscillator operating at low guiding magnetic field[J]. Physics of Plasma, 2014, 21: 063307. doi: 10.1063/1.4886150
    [8] 吴洋, 周自刚. S波段低磁场高效率相对论返波管振荡器研究[J]. 物理学报, 2019, 68:194101 doi: 10.7498/aps.68.20182155

    Wu Yang, Zhou Zigang. S-band high-efficiency relativistic backward waveoscillator with low magnetic field[J]. Acta Physica Sinica, 2019, 68: 194101 doi: 10.7498/aps.68.20182155
    [9] Bai Zhen, Zhang Jun, Zhong Huihuang. A dual-mode operation overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic mode output[J]. Physics of plasmas, 2016, 23: 043109. doi: 10.1063/1.4945645
    [10] 邓秉方. 低磁场V波段相对论渡越时间振荡器研究[D]. 长沙: 国防科技大学, 2021

    Deng Bingfang. Investigation of a V-band relativistic transit-time oscillator with low guiding magnetic field[D]. Changsha: National University of Defense Technology, 2021
    [11] Li Xiaoze, Song Wei, Tan Weibing, et al. Simulation of a low magnetic field relativistic backward wave oscillator with single mode structure[J]. Physics of Plasmas, 2016, 23: 023115. doi: 10.1063/1.4942423
    [12] Wu Y. Investigation of Tritron as a high power microwave oscillator[J]. Physics of Plasmas, 2017, 24: 073105. doi: 10.1063/1.4990559
    [13] Wu Yang. An S-band klystron-like relativistic backward wave oscillator operating at low magnetic field with high conversion efficiency[J]. Physics of Plasmas, 2023, 30: 033101. doi: 10.1063/5.0136622
    [14] 左靖凡, 李士锋, 吴洋, 等. 带双腔反射器的X波段低磁场过模相对论返波管振荡器[J]. 强激光与粒子束, 2024, 36:033010 doi: 10.11884/HPLPB202436.230319

    Zuo Jingfan, Li Shifeng, Wu Yang, et al. Low magnetic field X-band over-mode relativistic backward wave oscillator with dual-cavity reflector[J]. High Power Laser and Particle Beams, 2024, 36: 033010 doi: 10.11884/HPLPB202436.230319
    [15] 江佩洁, 李正红, 吴洋. 低磁场S波段相对论返波振荡器的工作特性[J]. 强激光与粒子束, 2019, 31:033001 doi: 10.11884/HPLPB201931.190010

    Jiang Peijie, Li Zhenghong, Wu Yang. Operating characteristics of an S-band relativistic backward wave oscillator with low magnetic field[J]. High Power Laser and Particle Beams, 2019, 31: 033001 doi: 10.11884/HPLPB201931.190010
  • 加载中
图(9)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  8
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-22
  • 修回日期:  2025-06-12
  • 录用日期:  2025-06-10
  • 网络出版日期:  2025-06-21

目录

    /

    返回文章
    返回