留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种天线馈源结构在扰动力影响下的振动控制方法

徐秀栋 李锐 程杰 李梅 禹伟荣 吴少彤 刘尧 刘家玮

徐秀栋, 李锐, 程杰, 等. 一种天线馈源结构在扰动力影响下的振动控制方法[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250090
引用本文: 徐秀栋, 李锐, 程杰, 等. 一种天线馈源结构在扰动力影响下的振动控制方法[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250090
Xu Xiudong, Li Rui, Cheng Jie, et al. The vibration control method for structure of feed source under external excitation[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250090
Citation: Xu Xiudong, Li Rui, Cheng Jie, et al. The vibration control method for structure of feed source under external excitation[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250090

一种天线馈源结构在扰动力影响下的振动控制方法

doi: 10.11884/HPLPB202537.250090
详细信息
    作者简介:

    徐秀栋,xuxiudong@nint.ac.cn

  • 中图分类号: TM85

The vibration control method for structure of feed source under external excitation

  • 摘要: 高功率微波系统上使用的固面天线一般为悬臂结构,在有外界扰动力情况下,很难保持馈源结构较低加速度响应的要求。传统的动力吸振方法可以较好地控制悬臂结构的振动响应,但是这种方法仅能在一个有限的频率范围内抑制悬臂结构的响应加速度。为了解决上述问题,提出了一种主动控制与被动吸振相结合的最优振动控制方法。通过分析和仿真固面天线的结构模型得到主动吸振器最佳的安装位置,然后根据简化被动吸振器数学模型计算出最优的参数,在此基础上,将滑模控制方法与主动吸振方法相结合设计了相应的控制律,同时,证明了控制律的稳定性。仿真分析了存在主动控制吸振器情况下的两自由度振动系统,得出天线馈源结构随时间的振动响应情况。结果表明:该方法可以有效降低在外界扰动下馈源结构顶部的加速度响应,顶部最大振幅相比无控制情况可降低95%以上,馈源结构在该控制器作用下处于较稳定的状态。
  • 图  1  典型微波系统构成

    Figure  1.  The structure of microwave system

    (1-pulsed power source; 2-microwave source; 3-waveguide; 4-structure of feed source)

    图  2  两自由度动力吸振模型

    Figure  2.  The simplified dynamic absorber model of antenna

    图  3  两种类型的主动动力吸振系统

    Figure  3.  Two active absorber models

    图  4  变刚度吸振器结构

    Figure  4.  The structure of variable stiffness absorber

    图  5  馈源结构的实际有限元模型

    Figure  5.  Finite element model of feed source structure

    (1-top point of antenna; 2-point 1; 3-point 2; 4-point 3; 5-point 4; 6-fixed plane)

    图  6  吸振器位于不同安装位置时馈源口的加速度响应对比图

    Figure  6.  Acceleration response of top point for various absorber fixed positions

    图  7  无吸振器情况下在外界扰动力作用下馈源口位移变化曲线

    Figure  7.  The displacement of top point for external force with no absorber

    图  8  被动吸振器位于最优位置时外界扰动力作用下馈源口位移变化曲线

    Figure  8.  The vibration displacement of top point for external force with optimal passive absorber

    图  9  主动吸振器位于最优位置时外界扰动力作用下馈源口位移变化曲线

    Figure  9.  The displacement of top point for external force with optimal active absorber

    图  10  在主动吸振器作用下吸振块与馈源结构之间刚度变化曲线

    Figure  10.  The stiffness between absorber with feed source structure for optimal active controller

  • [1] Rogers C A, Stutzman W L, Campbell T G, et al. Technology assessment and development of large deployable antennas[J]. Journal of Aerospace Engineering, 1993, 6(1): 34-54. doi: 10.1061/(ASCE)0893-1321(1993)6:1(34)
    [2] Ribeiro E A, Pereira J T, Bavastri C A. Passive vibration control in rotor dynamics: optimization of composed support using viscoelastic materials[J]. Journal of Sound and Vibration, 2015, 351: 43-56. doi: 10.1016/j.jsv.2015.04.007
    [3] Koo J H, Ahmadian M. A qualitative analysis of groundhook tuned vibration absorbers for controlling structural vibrations[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2002, 216(4): 351-359. doi: 10.1243/146441902320992446
    [4] Fisco N R, Adeli H. Smart structures: part Ⅰ-active and semi-active control[J]. Scientia Iranica, 2011, 18(3): 275-284. doi: 10.1016/j.scient.2011.05.034
    [5] Fisco N R, Adeli H. Smart structures: part Ⅱ-hybrid control systems and control strategies[J]. Scientia Iranica, 2011, 18(3): 285-295. doi: 10.1016/j.scient.2011.05.035
    [6] Viguié R, Kerschen G. Nonlinear vibration absorber coupled to a nonlinear primary system: a tuning methodology[J]. Journal of Sound and Vibration, 2009, 326(3/5): 780-793.
    [7] Oueini S S, Nayfeh A H, Pratt J R. A nonlinear vibration absorber for flexible structures[J]. Nonlinear Dynamics, 1998, 15(3): 259-282. doi: 10.1023/A:1008250524547
    [8] Pappalardo C M, Guida D. Development of a new inertial-based vibration absorber for the active vibration control of flexible structures[J]. Engineering Letters, 2018, 26(3): 372-385.
    [9] Huang S J, Lian R J. A dynamic absorber with active vibration control[J]. Journal of Sound and Vibration, 1994, 178(3): 323-335. doi: 10.1006/jsvi.1994.1489
    [10] Huang Y M, Hung S C. Analytical study of an active piezoelectric absorber on vibration attenuation of a plate[J]. Journal of Sound and Vibration, 2011, 330(3): 361-373. doi: 10.1016/j.jsv.2010.08.025
    [11] Gouaisbaut F, Dambrine M, Richard J P, et al. Robust control of delay systems: a sliding mode control design via LMI[J]. System & Control Letters, 2002, 46(4): 219-230.
    [12] Yan Tinghao, Ren Chuanbo, Zhou Jilei, et al. The study on vibration reduction of nonlinear time-delay dynamic absorber under external excitation[J]. Mathematical Problems in Engineering, 2020, 2020: 8578596.
    [13] Chen Chen, Xiong Jian, Wan Zhiqiang, et al. A time delay compensation method based on area equivalence for active damping of an LCL-type converter[J]. IEEE Transactions on Power Electronics, 2017, 32(1): 762-772. doi: 10.1109/TPEL.2016.2531183
    [14] Yang Yiqing, Gao Haoyang, Ma Wenshuo, et al. Design of a turning cutting tool with large length-diameter ratio based on three-element type vibration absorber[J]. Journal of Engineering Manufacture, 2020, 234(6/7): 1032-1043.
    [15] Tehrani G G, Dardel M, Pashaei M H. Passive vibration absorbers for vibration reduction in the multi-bladed rotor with rotor and stator contact[J]. Acta Mechanism, 2020, 321: 597-623.
    [16] Moradi H, Bakhtiari-Nejad F, Movahhedy M R, et al. Stability improvement and regenerative chatter suppression in nonlinear milling process via tunable vibration absorber[J]. Journal of Sound and Vibration, 2012, 331(21): 4668-4690. doi: 10.1016/j.jsv.2012.05.032
    [17] Komatsuzaki T, Iwata Y, Ringe H, et al. Adaptive tuned dynamic vibration absorber with variable stiffness property using magneto-rheological elastomers[C]//Proceedings of the ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. 2013: 16-18.
    [18] Sayyad F B, Gadhave N D. Variable stiffness type magnetic vibration absorber to control the vibration of beam structure[J]. Journal of Vibration and Control, 2014, 20(13): 1960-1966. doi: 10.1177/1077546313481237
  • 加载中
图(10)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  9
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-22
  • 修回日期:  2025-06-15
  • 录用日期:  2025-06-05
  • 网络出版日期:  2025-07-07

目录

    /

    返回文章
    返回