留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PIN二极管的兆瓦级快速倒相开关设计

陈良萍 殷勇 江涛 秦雨 李海龙 王彬 毕亮杰 熊正锋 蒙林

陈良萍, 殷勇, 江涛, 等. 基于PIN二极管的兆瓦级快速倒相开关设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250097
引用本文: 陈良萍, 殷勇, 江涛, 等. 基于PIN二极管的兆瓦级快速倒相开关设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250097
Chen Liangping, Yin Yong, Jiang Tao, et al. Design of a megawatt-level fast bi-phase modulator based on PIN diodes[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250097
Citation: Chen Liangping, Yin Yong, Jiang Tao, et al. Design of a megawatt-level fast bi-phase modulator based on PIN diodes[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250097

基于PIN二极管的兆瓦级快速倒相开关设计

doi: 10.11884/HPLPB202537.250097
基金项目: 国家自然科学基金项目(62271113、62401125); 四川省自然科学基金项目(2023NSFSC1376); 中央高校基础研究基金项目(ZYGX2024J008)
详细信息
    作者简介:

    陈良萍,clp@std.uestc.edu.cn

  • 中图分类号: TN623

Design of a megawatt-level fast bi-phase modulator based on PIN diodes

  • 摘要: 为研究基于磁控管等电真空振荡器的低成本、小型化、稳定且可阵列化应用的SLAC能量倍增器(SLED),设计了一种功率容量兆瓦级、响应时间纳秒级的高功率快速倒相开关。在波导结构中插入传统PIN二极管加载线型移相电路单元,通过波导外置偏置电路控制PIN二极管的“开”/“关”状态,改变移相电路的等效阻抗以控制波导传输微波相位。已通过高功率实验验证了此类二极管波导移相器的高功率特性。通过级联8个移相电路单元实现180°相移。对所设计的倒相开关进行了频域与时域参数测试:频域测试结果表明,该倒相开关在工作频率下的插损小于0.7 dB,在中心频率2.458 GHz处相移172°,相移量与仿真设计值相比误差在±4°以内;时域测试结果表明,该倒相开关的倒相时间约为5 ns。
  • 图  1  倒相开关结构及其倒相原理示意图

    Figure  1.  Schematic diagram of the bi-phase modulator structure and its phase inverting principle

    图  2  倒相开关S参数测试系统

    Figure  2.  S-parameter test system for the bi-phase modulator

    图  3  倒相开关“开”/“关”两种状态下的实验测试S参数与仿真计算S参数对比

    Figure  3.  Comparison of experimental S-parameters and simulated S-parameters for on/off states of the bi-phase modulator

    图  4  倒相开关实验测试相移量与仿真计算相移量的对比及相位误差

    Figure  4.  Comparison of experimental and simulated phase shifts of the bi-phase modulator and the phase error

    图  5  影响倒相开关性能的主要因素分析

    Figure  5.  Analysis of the main factors affecting the performance of the bi-phase modulator

    图  6  二极管焊接状态改善前后对比

    Figure  6.  Comparison of diode soldering conditions before and after improvement

    图  7  改善二极管焊接前后的测试结果与仿真结果对比

    Figure  7.  Comparison of test and simulation results before and after improved diode soldering

    图  8  倒相开关的时域测试系统和二极管偏置电压脉冲与倒相开关传输的微波脉冲同步效果

    Figure  8.  Time-domain test system for the bi-phase modulator and synchronization of diode bias voltage pulses with microwave pulses transmitted in the bi-phase modulator

    图  9  倒相开关的时域测试结果

    Figure  9.  Time-domain test result of the bi-phase modulator

    图  10  “开”/“关”状态下倒相开关的输入信号和输出信号的时域测试结果对比

    Figure  10.  Comparison of time-domain test results of input signal and output signal of the bi-phase modulator in on/off states

    表  1  工作频率2.458 GHz处的实测及仿真参数

    Table  1.   Measured and simulated parameters at 2.458 GHz operating frequency

    SF11/dB SF21/dB SR11/dB SR21/dB φ/(°)
    simulated −28.98 −0.43 −40.76 −0.31 169.38
    experimental −17.53 −0.62 −12.59 −0.68 171.57
    error 11.45 0.19 28.17 0.37 2.19
    下载: 导出CSV

    表  2  设计的倒相开关与文献中移相器的性能参数对比

    Table  2.   Comparison of the performance parameters of the bi-phase modulator designed with the phase shifters (PS) in the literature

    works PS type power capacity response time insertion loss
    Ref. [29] waveguide PS 450 MW in vacuum 30 ms < 0.4 dB
    Ref. [30] reflective-type PS 5 W N/A 2 dB
    Ref. [22] reflection type bi-PS N/A 4 ns N/A
    this work PIN diode waveguide PS >1 MW 5 ns < 0.7 dB
    下载: 导出CSV
  • [1] Woolley B, Syratchev I, Dexter A. Control and performance improvements of a pulse compressor in use for testing accelerating structures at high power[J]. Physical Review Accelerators and Beams, 2017, 20: 101001. doi: 10.1103/PhysRevAccelBeams.20.101001
    [2] 熊正锋. 基于大功率速调管产生高功率微波技术研究[D]. 北京: 清华大学, 2016: 1-13

    Xiong Zhengfeng. Research on the technology for generating high power microwaves based on high power klystrons[D]. Beijing: Tsinghua University, 2016: 1-13
    [3] Wang J W, Tantawi S G, Xu Chen, et al. Development for a supercompact X-band pulse compression system and its application at SLAC[J]. Physical Review Accelerators and Beams, 2017, 20: 110401. doi: 10.1103/PhysRevAccelBeams.20.110401
    [4] Wang Ping, Shi Jiaru, Zha Hao, et al. Development of an S-band spherical pulse compressor[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 901: 84-91.
    [5] Jiang Yuliang, Zha Hao, Wang Ping, et al. Demonstration of a cavity-based pulse compression system for pulse shape correction[J]. Physical Review Accelerators and Beams, 2019, 22: 082001. doi: 10.1103/PhysRevAccelBeams.22.082001
    [6] Jiang Tao, Yang Meng, Xiong Zhengfeng, et al. An X-band switched energy storage microwave pulse compression system[J]. IEEE Transactions on Plasma Science, 2019, 47(10): 4525-4529. doi: 10.1109/TPS.2019.2920739
    [7] Artemenko S N, Igumnov V S, Shlapakovsky A S, et al. Compact active s-band microwave compressors for producing rectangular pulses of up to 100 ns[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(2): 597-605. doi: 10.1109/TMTT.2018.2886850
    [8] Ioannidis Z C, Savaidis S P, Mitilineos S A, et al. Design of microwave pulse compressors using small form-factor waveguide cavities[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(8): 3255-3262. doi: 10.1109/TMTT.2020.2996218
    [9] 张治强, 方进勇, 郝文析, 等. X波段脉冲压缩装置的数值模拟及优化设计[J]. 强激光与粒子束, 2006, 18(2): 330-332

    Zhang Zhiqiang, Fang Jinyong, Hao Wenxi, et al. Numerical simulation and optimization design of X-band pulse compression equipment[J]. High Power Laser and Particle Beams, 2006, 18(2): 330-332
    [10] Vikharev A L, Ivanov O A, Gorbachev A M, et al. Experiments on active RF pulse compressors using plasma switches[J]. AIP Conference Proceedings, 2006, 807(1): 463-473.
    [11] Artemenko S N, Gorev S A, Igumnov V S, et al. Formation of rectangular pulses in an active microwave compressor with an oversized compact storage cavity[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(2): 1255-1264. doi: 10.1109/TMTT.2020.3042509
    [12] 陶小魁, 何志文, 邢庆子, 等. SES微波脉冲压缩系统瞬态特性的模拟研究[J]. 强激光与粒子束, 2005, 17(4): 559-563

    Tao Xiaokui, He Zhiwen, Xing Qingzi, et al. Simulation research on the instantaneous response of HPM pulse compression by SES method[J]. High Power Laser and Particle Beams, 2005, 17(4): 559-563
    [13] Beilin L, Shlapakovski A S, Donskoy M, et al. Fast-framing optical imaging of plasma formation in resonant microwave pulse compressor[J]. IEEE Transactions on Plasma Science, 2014, 42(5): 1346-1352. doi: 10.1109/TPS.2014.2316204
    [14] 宁辉, 方进勇, 李平, 等. 高功率微波脉冲压缩技术实验研究[J]. 强激光与粒子束, 2001, 13(4): 471-474

    Ning Hui, Fang Jinyong, Li Ping, et al. Experimental research on HPM pulse compression[J]. High Power Laser and Particle Beams, 2001, 13(4): 471-474
    [15] Chen Liangping, Yin Yong, Deng Shun, et al. Experimental study on breakdown characteristics of microwave gas discharge tubes[J]. IEEE Transactions on Plasma Science, 2024, 52(10): 4960-4966. doi: 10.1109/TPS.2024.3376970
    [16] Jiang Yuliang, Zha Hao, Shi Jiaru, et al. A compact X-band microwave pulse compressor using a corrugated cylindrical cavity[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(3): 1586-1593. doi: 10.1109/TMTT.2021.3053913
    [17] Jiang Yuliang, Shi Jiaru, Wang Ping, et al. Compact two-stage pulse compression system for producing gigawatt microwave pulses[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(10): 4533-4540. doi: 10.1109/TMTT.2021.3093554
    [18] Wang Ping, Zha Hao, Syratchev I, et al. rf design of a pulse compressor with correction cavity chain for klystron-based compact linear collider[J]. Physical Review Accelerators and Beams, 2017, 20: 112001. doi: 10.1103/PhysRevAccelBeams.20.112001
    [19] 王平. 新型高功率微波脉冲压缩器的研究[D]. 北京: 清华大学, 2018: 79-94

    Wang Ping. Research on the novel high-power microwave pulse compressors[D]. Beijing: Tsinghua University, 2018: 79-94
    [20] 王自成, 张志强, 高冬平, 等. 高品质因数谐振腔的储能过程和泄能过程[J]. 强激光与粒子束, 2021, 33: 103007 doi: :10.11884/HPLPB202133.210132

    Wang Zicheng, Zhang Zhiqiang, Gao Dongping, et al. Storing and dumping processes of energy in high quality factor resonant cavity[J]. High Power Laser and Particle Beams, 2021, 33: 103007 doi: :10.11884/HPLPB202133.210132
    [21] Xiong Zhengfeng, Cheng Cheng, Yu Jian, et al. Switching speed effect of phase shift keying in SLED for generating high power microwaves[J]. Chinese Physics C, 2016, 40: 017006. doi: 10.1088/1674-1137/40/1/017006
    [22] 白维达, 江涛, 熊正锋, 等. S波段高精度快速倒相开关设计[J]. 强激光与粒子束, 2020, 32(5): 053002 (Bai Weida, Jiang Tao, Xiong Zhengfeng, et al. Design of S-band bi-phase modulator with high speed and accuracy[J]. High Power Laser and Particle Beams, 2020, 32(5): 053002 doi: 10.11884/HPLPB202032.190394

    Bai Weida, Jiang Tao, Xiong Zhengfeng, et al. Design of S-band bi-phase modulator with high speed and accuracy[J]. High Power Laser and Particle Beams, 2020, 32(5): 053002 doi: 10.11884/HPLPB202032.190394
    [23] 沈旭明, 张鹏, 和天慧. 能量倍增器法微波脉冲压缩[J]. 强激光与粒子束, 2010, 22(4): 849-852 doi: 10.3788/HPLPB20102204.0849

    Shen Xuming, Zhang Peng, He Tianhui. High power microwave pulse compression of energy doublers[J]. High Power Laser and Particle Beams, 2010, 22(4): 849-852 doi: 10.3788/HPLPB20102204.0849
    [24] Song Minsheng, Bi Liangjie, Meng Lin, et al. High-efficiency phase-locking of millimeter-wave magnetron for high-power array applications[J]. IEEE Electron Device Letters, 2021, 42(11): 1658-1661. doi: 10.1109/LED.2021.3112563
    [25] Li Wenlong, Li Hailong, Qin Yu, et al. Phase control demonstration of S-band hybrid phase-locking magnetrons for array applications[J]. IEEE Transactions on Microwave Theory and Techniques, doi: 10.1109/TMTT.2025.3536474.
    [26] Qin Yu, Bi Liangjie, Yin Yong, et al. Simulation and experiment study of modular X-band phase-locking magnetron[J]. IEEE Transactions on Electron Devices, 2024, 71(7): 4342-4346. doi: 10.1109/TED.2024.3405399
    [27] Bi Liangjie, Zheng Qiong, Li Hailong, et al. Multiorder-cascaded matching of coupling structures for high-efficiency phase locking between multiple magnetrons[J]. IEEE Transactions on Electron Devices, 2024, 71(6): 3932-3939. doi: 10.1109/TED.2024.3392548
    [28] Chen Liangping, Yin Yong, Jiang Tao, et al. A megawatt p-i-n diode waveguide phase shifter[J]. IEEE Transactions on Microwave Theory and Techniques, doi: 10.1109/TMTT.2025.3546193.
    [29] Li Xin, Wang Bangji, Ding Qiao, et al. High-power mechanical waveguide phase shifter: electromagnetic resonance analysis and protection design[J]. IEEE Transactions on Microwave Theory and Techniques, 2025, 73(2): 760-769. doi: 10.1109/TMTT.2024.3440316
    [30] Gurbuz O D, Rebeiz G M. A 1.6–2.3-GHz RF MEMS reconfigurable quadrature coupler and its application to a 360° reflective-type phase shifter[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(2): 414-421. doi: 10.1109/TMTT.2014.2379258
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  58
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-15
  • 修回日期:  2025-07-17
  • 录用日期:  2025-06-30
  • 网络出版日期:  2025-07-23

目录

    /

    返回文章
    返回