Modeling and calculation of radiation effects of high-energy rays on PCB inside a shielded enclosure
-
摘要: X/γ射线照射电子系统屏蔽盒时会穿透盒体在各层系统表面或内部产生光电子或康普顿电子,并激励起电磁脉冲,这些粒子或电磁场将干扰甚至损伤盒内电子系统的敏感电子元器件,影响电子系统的正常工作。为快速评估受射线照射下的电子系统内部粒子和电磁环境及其效应,理论分析了屏蔽盒腔体内初级粒子激励的电磁脉冲与PCB的场路耦合及射线直接多层穿透耦合这两种作用机制下产生的辐照响应,构建了其等效电路模型并验证了可行性,进而利用该模型对产生的效应电流进行了计算。在此基础上,利用该计算建模方法研究分析了对PCB采用涂覆绝缘防护层和进行接地两种保护措施后的PCB系统辐照效应的变化规律。为研究电子系统屏蔽盒的辐射效应提供了一种较为完整的直观理论计算方法,其可以在不采用模拟仿真软件的前提下实现对电子系统辐射效应的计算分析,并可推广至更广泛的场景。Abstract:
Background X/γ-ray irradiation of an electronic system shielding box will penetrate the box body in the various layers of the system surface or internal photoelectron or Compton electrons, and excitation of electromagnetic pulse, these particles or electromagnetic fields will interfere with or even damage the sensitive electronic components of the electronic system inside the box, affecting the regular operation of the electronic system.Purpose Rapidly assess the particle and electromagnetic environment inside electronic systems under radiation exposure and enable timely protective measures that mitigate radiation-induced damage and ensure reliable operation.Methods We present a theoretical analysis of irradiation responses arising from two coupling mechanisms: electromagnetic pulses excited by primary particles within the cavity of a shielded enclosure and their field-to-circuit coupling to a printed circuit board (PCB), and direct multi-layer penetration coupling of ionizing radiation. Equivalent-circuit models were constructed to represent these coupling paths, and transient current responses were calculated analytically.Results The transient current responses of the shielded enclosure under high-energy radiation, computed using the equivalent-circuit approach, reproduce the trends observed in published experimental measurements and exhibit approximate numerical agreement.Conclusions The results validate the proposed theoretical modeling approach, showing that analytical equivalent-circuit analysis can provide rapid, simulation-free estimates of radiation effects on electronic systems. The method can be extended to scenarios that more closely match practical applications . -
表 1 屏蔽盒的参数设置
Table 1. Parameter settings for the shielding box
shielding box dielectric L/cm d/cm $ {x_1} $/cm $ {x_2} $/cm $ {A_{\text{L}}} $/cm2 aluminum glass epoxy ($ \rho = 2.2 $ g/cm3) 0.1303 0.033 0.061 0.038 3 表 2 单能谱照射铝的前向电子产率
Table 2. Single-energy spectroscopy irradiated with Aluminum in the lead electron yield
energy/keV aluminum forward electron
yield/(MeV/cm2)20 2.46×106 40 7.99×105 60 3.55×105 80 2.01×105 100 5.542×10−9 120 1.45×105 140 1.08×105 160 1.31×105 -
[1] 王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010: 170-198Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. The parameter manual book of high-altitude nuclear explosion effects[M]. Beijing: Atomic Energy Press, 2010: 170-198 [2] 王泰春, 贺云汉, 王玉芝. 电磁脉冲导论[M]. 北京: 国防工业出版社, 2011: 130-131Wang Taichun, He Yunhan, Wang Yuzhi. Introduction to electromagnetic pulse[M]. Beijing: National Defense Industry Press, 2011: 130-131 [3] Genuario R D. Electron beam transport experimts with short duration pulses[J]. IEEE Transactions on Nuclear Science, 1975, 22(5): 2098-2102. doi: 10.1109/TNS.1975.4328071 [4] 葛德彪, 阎玉波. 电磁波时域有限差分方法[M]. 西安: 西安电子科技大学出版社, 2002: 56-58Ge Debiao, Yan Yubo. FDTD methods in electromagnetics[M]. Xi’an: Xidian University Press, 2002: 56-58 [5] Higgins D, Lee K, Marin L. System-generated EMP[J]. IEEE Transactions on Antennas and Propagation, 1978, 26(1): 14-22. doi: 10.1109/TAP.1978.1141797 [6] 张含天, 陈剑楠, 周前红, 等. 系统电磁脉冲建模与数值模拟研究进展[J]. 电波科学学报, 2024, 39(5): 797-807 doi: 10.12265/j.cjors.2024034Zhang Hantian, Chen Jiannan, Zhou Qianhong, et al. Progress in modeling and numerical simulation of system generated electromagnetic pulse[J]. Chinese Journal of Radio Science, 2024, 39(5): 797-807 doi: 10.12265/j.cjors.2024034 [7] Wang Jianguo, Liu Li, Zuo Yinghong, et al. Research progress in numerical simulation of environmental parameters generated by the high-altitude nuclear explosions[J]. IEEE Transactions on Nuclear Science, 2025, 72(3): 884-900. doi: 10.1109/TNS.2025.3530013 [8] Carron N J, Longmire C L. Scaling behavior of the time-dependent SGEMP boundary layer[J]. IEEE Transactions on Nuclear Science, 1978, 25(6): 1329-1335. doi: 10.1109/TNS.1978.4329533 [9] 周辉, 陈雨生, 华呜. 系统电磁脉冲的数值模拟技术[J]. 计算物理, 1992, 9(4): 663Zhou Hui, Chen Yusheng, Hua Wu. Numerical simulation techniques for system electromagnetic pulse[J]. Chinese Journal of Computational Physics, 1992, 9(4): 663 [10] 周辉, 李宝忠, 王立君, 等. 不同注量X射线系统电磁脉冲响应的数值计算[J]. 计算物理, 1999, 16(2): 157-161Zhou Hui, Li Baozhong, Wang Lijun, et al. The calculation of SGEMP response in various ranges of X-ray fluence[J]. Chinese Journal of Computational Physics, 1999, 16(2): 157-161 [11] 程引会, 周辉, 李宝忠, 等. 光电子发射引起的柱腔内系统电磁脉冲的模拟[J]. 强激光与粒子束, 2004, 16(8): 1029-1032Cheng Yinhui, Zhou Hui, Li Baozhong, et al. Simulation of system-generated electromagnetic pulse caused by emitted photoelectron in cavity[J]. High Power Laser and Particle Beams, 2004, 16(8): 1029-1032 [12] 张含天, 周前红, 周海京, 等. 二次电子发射对系统电磁脉冲的影响[J]. 物理学报, 2021, 70: 165201 doi: 10.7498/aps.70.20210461Zhang Hantian, Zhou Qianhong, Zhou Haijing, et al. Effect of secondary electrons on SGEMP response[J]. Acta Physica Sinica, 2021, 70: 165201 doi: 10.7498/aps.70.20210461 [13] 孙会芳, 董志伟, 周海京. 圆柱腔内系统电磁脉冲的数值模拟[J]. 强激光与粒子束, 2021, 33: 123018 doi: 10.11884/HPLPB202133.210354Sun Huifang, Dong Zhiwei, Zhou Haijing. Simulation study of internal system generated electromagnetic pulse of cylinder cavity[J]. High Power Laser and Particle Beams, 2021, 33: 123018 doi: 10.11884/HPLPB202133.210354 [14] Ribière M, d’Almeida T, Cessenat O, et al. Investigating the electron density of multi-MeV X-ray-induced air plasmas at low pressures based on electromagnetic resonant cavity analysis[J]. Physics of Plasmas, 2016, 23: 122106. doi: 10.1063/1.4969083 [15] 陈剑楠, 张俊杰. 环形缝隙与支柱结构对重入腔系统电磁脉冲场耦合影响的计算[J]. 现代应用物理, 2021, 12: 040501Chen Jiannan, Zhang Junjie. Simulation of impact of annular seam and pillar on system-generated electromagnetic pulse field-coupling in reentrant cavity[J]. Modern Applied Physics, 2021, 12: 040501 [16] Chen Jiannan, Wang Jianguo, Tao Yinglong, et al. Simulation of SGEMP using particle-in-cell method based on conformal technique[J]. IEEE Transactions on Nuclear Science, 2019, 66(5): 820-826. doi: 10.1109/TNS.2019.2911933 [17] Higgins D F. Time-domain calculation of the leakage of SGEMP transients through braided cable shields[J]. IEEE Transactions on Nuclear Science, 1989, 36(6): 2042-2049. doi: 10.1109/23.45403 [18] 周辉, 郭红霞, 李宝忠, 等. 金属壳体和电缆的系统电磁脉冲响应[J]. 强激光与粒子束, 2004, 16(5): 645-648Zhou Hui, Guo Hongxia, Li Baozhong, et al. Response of metal shell and cables to system generate electromagnetic pulse effects[J]. High Power Laser and Particle Beams, 2004, 16(5): 645-648 [19] 李进玺, 程引会, 李宝忠, 等. 线缆X射线瞬态响应的电路模型计算[J]. 原子能科学技术, 2012, 46(1): 1-5 doi: 10.7538/yzk.2012.46.01.0001Li Jinxi, Cheng Yinhui, Li Baozhong, et al. Circuit Model of wires and cables X-ray transient responses[J]. Atomic Energy Science and Technology, 2012, 46(1): 1-5 doi: 10.7538/yzk.2012.46.01.0001 [20] Seidler W, Keyser R, Walters D, et al. The limits to hardening electronic boxes to IEMP coupling[J]. IEEE Transactions on Nuclear Science, 1982, 29(6): 1780-1786. doi: 10.1109/TNS.1982.4336447 [21] 李进玺, 程引会, 吴伟, 等. 印制电路板X射线瞬态响应计算[J]. 核电子学与探测技术, 2014, 34(10): 1267-1270 doi: 10.3969/j.issn.0258-0934.2014.10.026Li Jinxi, Cheng Yinhui, Wu Wei, et al. Calculation of transient responses for printed circuit board to X-ray[J]. Nuclear Electronics & Detection Technology, 2014, 34(10): 1267-1270 doi: 10.3969/j.issn.0258-0934.2014.10.026 [22] Fitzwilson R L, Bernstein M J, Alston T E. Radiation induced currents in shielded multi-conductor and semirigid cables[J]. IEEE Transactions on Nuclear Science, 1974, 21(6): 276-283. doi: 10.1109/TNS.1974.6498941 [23] Zhang Hantian, Zhou Qianhong, Zhou Haijing, et al. Numerical simulation of SGEMP generated by X-rays from high-altitude nuclear detonations[J]. IEEE Transactions on Nuclear Science, 2023, 70(4): 678-685. doi: 10.1109/TNS.2023.3249288 [24] Jung S T, Pyo S H, Kang W G, et al. Energy deposition calculation by Monte Carlo simulation in irradiation of electric cables by electron beam[J]. Radiation Physics and Chemistry, 2021, 186: 109506. doi: 10.1016/j.radphyschem.2021.109506 [25] Woods A J. Photon source SGEMP spectrum evaluations[M]. Berlin: Springer, 1978: 16-17. [26] Dellin T A, MacCallum C J. Handbook of photo-compton current data[M]. Norwalk: Perkin-Elmer Corporation, 1972: 21-52. [27] Martin J E. Physics for radiation protection[M]. Weinheim: Wiley-VCH, 2013: 262-263. [28] Pavlenko V I, Edamenko O D, Cherkashina N I, et al. Total energy losses of relativistic electrons passing through a polymer composite[J]. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2014, 8(2): 398-403. doi: 10.1134/S1027451014020402 [29] 张玲玉, 李瑞, 李刚, 等. 基于组合几何与自定义网格的粒子输运模拟方法[J]. 现代应用物理, 2022, 13: 010203 doi: 10.12061/j.issn.2095-6223.2022.010203Zhang Lingyu, Li Rui, Li Gang, et al. Particle transport simulation method based on constructive solid geometry and custom mesh[J]. Modern Applied Physics, 2022, 13: 010203 doi: 10.12061/j.issn.2095-6223.2022.010203 [30] 朱金辉, 左应红, 刘利, 等. 蒙特卡罗方法在核爆辐射环境模拟中的应用与发展[J]. 现代应用物理, 2023, 14: 030104Zhu Jinhui, Zuo Yinghong, Liu Li, et al. Application and development of Monte Carlo method in simulation of nuclear explosion radiation environments[J]. Modern Applied Physics, 2023, 14: 030104 -