留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

屏蔽盒内PCB高能射线辐射效应的建模及计算

张艺洁 郝建红 宋沛洋 张芳 范杰清 赵强 薛碧曦 董志伟 胡刚

张艺洁, 郝建红, 宋沛洋, 等. 屏蔽盒内PCB高能射线辐射效应的建模及计算[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250098
引用本文: 张艺洁, 郝建红, 宋沛洋, 等. 屏蔽盒内PCB高能射线辐射效应的建模及计算[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250098
Zhang Yijie, Hao Jianhong, Song Peiyang, et al. Modeling and calculation of radiation effects of high-energy rays on PCB inside a shielded enclosure[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250098
Citation: Zhang Yijie, Hao Jianhong, Song Peiyang, et al. Modeling and calculation of radiation effects of high-energy rays on PCB inside a shielded enclosure[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250098

屏蔽盒内PCB高能射线辐射效应的建模及计算

doi: 10.11884/HPLPB202537.250098
基金项目: 国家自然科学基金项目(12205024)
详细信息
    作者简介:

    张艺洁,1736378844@qq.com

    通讯作者:

    董志伟,dong_zhiwei@iapcm.ac.cn

  • 中图分类号: TL7

Modeling and calculation of radiation effects of high-energy rays on PCB inside a shielded enclosure

  • 摘要: X/γ射线照射电子系统屏蔽盒时会穿透盒体在各层系统表面或内部产生光电子或康普顿电子,并激励起电磁脉冲,这些粒子或电磁场将干扰甚至损伤盒内电子系统的敏感电子元器件,影响电子系统的正常工作。为快速评估受射线照射下的电子系统内部粒子和电磁环境及其效应,理论分析了屏蔽盒腔体内初级粒子激励的电磁脉冲与PCB的场路耦合及射线直接多层穿透耦合这两种作用机制下产生的辐照响应,构建了其等效电路模型并验证了可行性,进而利用该模型对产生的效应电流进行了计算。在此基础上,利用该计算建模方法研究分析了对PCB采用涂覆绝缘防护层和进行接地两种保护措施后的PCB系统辐照效应的变化规律。为研究电子系统屏蔽盒的辐射效应提供了一种较为完整的直观理论计算方法,其可以在不采用模拟仿真软件的前提下实现对电子系统辐射效应的计算分析,并可推广至更广泛的场景。
  • 图  1  屏蔽盒系统结构及其IEMP效应等效电路

    Figure  1.  Shielding Enclosure System Structure and Its IEMP Equivalent Circuit

    图  2  屏蔽盒结构及其瞬态辐照效应等效电路

    Figure  2.  Shielding enclosure structure and equivalent circuit for transient irradiation effects

    图  3  X射线源参数图

    Figure  3.  X-ray source parameter diagram

    图  4  不同布线面积的IEMP峰值电流

    Figure  4.  IEMP peak current for different cabling areas

    图  5  对PCB施加涂层的系统结构及瞬态辐照效应的等效电路

    Figure  5.  System structure for applying coating to PCB and equivalent circuit for transient irradiation effects

    图  6  对PCB施加接地面的系统结构及瞬态辐照效应的等效电路

    Figure  6.  System structure for applying a ground plane to PCB and equivalent circuit for transient irradiation effects

    图  7  不同PCB结构的直接辐照效应电流

    Figure  7.  Direct irradiation effect currents for different PCB structures

    表  1  屏蔽盒的参数设置

    Table  1.   Parameter settings for the shielding box

    shielding boxdielectricL/cmd/cm$ {x_1} $/cm$ {x_2} $/cm$ {A_{\text{L}}} $/cm2
    aluminumglass epoxy ($ \rho = 2.2 $ g/cm30.13030.0330.0610.0383
    下载: 导出CSV

    表  2  单能谱照射铝的前向电子产率

    Table  2.   Single-energy spectroscopy irradiated with Aluminum in the lead electron yield

    energy/keV aluminum forward electron
    yield/(MeV/cm2)
    20 2.46×106
    40 7.99×105
    60 3.55×105
    80 2.01×105
    100 5.542×10−9
    120 1.45×105
    140 1.08×105
    160 1.31×105
    下载: 导出CSV
  • [1] 王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010: 170-198

    Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. The parameter manual book of high-altitude nuclear explosion effects[M]. Beijing: Atomic Energy Press, 2010: 170-198
    [2] 王泰春, 贺云汉, 王玉芝. 电磁脉冲导论[M]. 北京: 国防工业出版社, 2011: 130-131

    Wang Taichun, He Yunhan, Wang Yuzhi. Introduction to electromagnetic pulse[M]. Beijing: National Defense Industry Press, 2011: 130-131
    [3] Genuario R D. Electron beam transport experimts with short duration pulses[J]. IEEE Transactions on Nuclear Science, 1975, 22(5): 2098-2102. doi: 10.1109/TNS.1975.4328071
    [4] 葛德彪, 阎玉波. 电磁波时域有限差分方法[M]. 西安: 西安电子科技大学出版社, 2002: 56-58

    Ge Debiao, Yan Yubo. FDTD methods in electromagnetics[M]. Xi’an: Xidian University Press, 2002: 56-58
    [5] Higgins D, Lee K, Marin L. System-generated EMP[J]. IEEE Transactions on Antennas and Propagation, 1978, 26(1): 14-22. doi: 10.1109/TAP.1978.1141797
    [6] 张含天, 陈剑楠, 周前红, 等. 系统电磁脉冲建模与数值模拟研究进展[J]. 电波科学学报, 2024, 39(5): 797-807 doi: 10.12265/j.cjors.2024034

    Zhang Hantian, Chen Jiannan, Zhou Qianhong, et al. Progress in modeling and numerical simulation of system generated electromagnetic pulse[J]. Chinese Journal of Radio Science, 2024, 39(5): 797-807 doi: 10.12265/j.cjors.2024034
    [7] Wang Jianguo, Liu Li, Zuo Yinghong, et al. Research progress in numerical simulation of environmental parameters generated by the high-altitude nuclear explosions[J]. IEEE Transactions on Nuclear Science, 2025, 72(3): 884-900. doi: 10.1109/TNS.2025.3530013
    [8] Carron N J, Longmire C L. Scaling behavior of the time-dependent SGEMP boundary layer[J]. IEEE Transactions on Nuclear Science, 1978, 25(6): 1329-1335. doi: 10.1109/TNS.1978.4329533
    [9] 周辉, 陈雨生, 华呜. 系统电磁脉冲的数值模拟技术[J]. 计算物理, 1992, 9(4): 663

    Zhou Hui, Chen Yusheng, Hua Wu. Numerical simulation techniques for system electromagnetic pulse[J]. Chinese Journal of Computational Physics, 1992, 9(4): 663
    [10] 周辉, 李宝忠, 王立君, 等. 不同注量X射线系统电磁脉冲响应的数值计算[J]. 计算物理, 1999, 16(2): 157-161

    Zhou Hui, Li Baozhong, Wang Lijun, et al. The calculation of SGEMP response in various ranges of X-ray fluence[J]. Chinese Journal of Computational Physics, 1999, 16(2): 157-161
    [11] 程引会, 周辉, 李宝忠, 等. 光电子发射引起的柱腔内系统电磁脉冲的模拟[J]. 强激光与粒子束, 2004, 16(8): 1029-1032

    Cheng Yinhui, Zhou Hui, Li Baozhong, et al. Simulation of system-generated electromagnetic pulse caused by emitted photoelectron in cavity[J]. High Power Laser and Particle Beams, 2004, 16(8): 1029-1032
    [12] 张含天, 周前红, 周海京, 等. 二次电子发射对系统电磁脉冲的影响[J]. 物理学报, 2021, 70: 165201 doi: 10.7498/aps.70.20210461

    Zhang Hantian, Zhou Qianhong, Zhou Haijing, et al. Effect of secondary electrons on SGEMP response[J]. Acta Physica Sinica, 2021, 70: 165201 doi: 10.7498/aps.70.20210461
    [13] 孙会芳, 董志伟, 周海京. 圆柱腔内系统电磁脉冲的数值模拟[J]. 强激光与粒子束, 2021, 33: 123018 doi: 10.11884/HPLPB202133.210354

    Sun Huifang, Dong Zhiwei, Zhou Haijing. Simulation study of internal system generated electromagnetic pulse of cylinder cavity[J]. High Power Laser and Particle Beams, 2021, 33: 123018 doi: 10.11884/HPLPB202133.210354
    [14] Ribière M, d’Almeida T, Cessenat O, et al. Investigating the electron density of multi-MeV X-ray-induced air plasmas at low pressures based on electromagnetic resonant cavity analysis[J]. Physics of Plasmas, 2016, 23: 122106. doi: 10.1063/1.4969083
    [15] 陈剑楠, 张俊杰. 环形缝隙与支柱结构对重入腔系统电磁脉冲场耦合影响的计算[J]. 现代应用物理, 2021, 12: 040501

    Chen Jiannan, Zhang Junjie. Simulation of impact of annular seam and pillar on system-generated electromagnetic pulse field-coupling in reentrant cavity[J]. Modern Applied Physics, 2021, 12: 040501
    [16] Chen Jiannan, Wang Jianguo, Tao Yinglong, et al. Simulation of SGEMP using particle-in-cell method based on conformal technique[J]. IEEE Transactions on Nuclear Science, 2019, 66(5): 820-826. doi: 10.1109/TNS.2019.2911933
    [17] Higgins D F. Time-domain calculation of the leakage of SGEMP transients through braided cable shields[J]. IEEE Transactions on Nuclear Science, 1989, 36(6): 2042-2049. doi: 10.1109/23.45403
    [18] 周辉, 郭红霞, 李宝忠, 等. 金属壳体和电缆的系统电磁脉冲响应[J]. 强激光与粒子束, 2004, 16(5): 645-648

    Zhou Hui, Guo Hongxia, Li Baozhong, et al. Response of metal shell and cables to system generate electromagnetic pulse effects[J]. High Power Laser and Particle Beams, 2004, 16(5): 645-648
    [19] 李进玺, 程引会, 李宝忠, 等. 线缆X射线瞬态响应的电路模型计算[J]. 原子能科学技术, 2012, 46(1): 1-5 doi: 10.7538/yzk.2012.46.01.0001

    Li Jinxi, Cheng Yinhui, Li Baozhong, et al. Circuit Model of wires and cables X-ray transient responses[J]. Atomic Energy Science and Technology, 2012, 46(1): 1-5 doi: 10.7538/yzk.2012.46.01.0001
    [20] Seidler W, Keyser R, Walters D, et al. The limits to hardening electronic boxes to IEMP coupling[J]. IEEE Transactions on Nuclear Science, 1982, 29(6): 1780-1786. doi: 10.1109/TNS.1982.4336447
    [21] 李进玺, 程引会, 吴伟, 等. 印制电路板X射线瞬态响应计算[J]. 核电子学与探测技术, 2014, 34(10): 1267-1270 doi: 10.3969/j.issn.0258-0934.2014.10.026

    Li Jinxi, Cheng Yinhui, Wu Wei, et al. Calculation of transient responses for printed circuit board to X-ray[J]. Nuclear Electronics & Detection Technology, 2014, 34(10): 1267-1270 doi: 10.3969/j.issn.0258-0934.2014.10.026
    [22] Fitzwilson R L, Bernstein M J, Alston T E. Radiation induced currents in shielded multi-conductor and semirigid cables[J]. IEEE Transactions on Nuclear Science, 1974, 21(6): 276-283. doi: 10.1109/TNS.1974.6498941
    [23] Zhang Hantian, Zhou Qianhong, Zhou Haijing, et al. Numerical simulation of SGEMP generated by X-rays from high-altitude nuclear detonations[J]. IEEE Transactions on Nuclear Science, 2023, 70(4): 678-685. doi: 10.1109/TNS.2023.3249288
    [24] Jung S T, Pyo S H, Kang W G, et al. Energy deposition calculation by Monte Carlo simulation in irradiation of electric cables by electron beam[J]. Radiation Physics and Chemistry, 2021, 186: 109506. doi: 10.1016/j.radphyschem.2021.109506
    [25] Woods A J. Photon source SGEMP spectrum evaluations[M]. Berlin: Springer, 1978: 16-17.
    [26] Dellin T A, MacCallum C J. Handbook of photo-compton current data[M]. Norwalk: Perkin-Elmer Corporation, 1972: 21-52.
    [27] Martin J E. Physics for radiation protection[M]. Weinheim: Wiley-VCH, 2013: 262-263.
    [28] Pavlenko V I, Edamenko O D, Cherkashina N I, et al. Total energy losses of relativistic electrons passing through a polymer composite[J]. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2014, 8(2): 398-403. doi: 10.1134/S1027451014020402
    [29] 张玲玉, 李瑞, 李刚, 等. 基于组合几何与自定义网格的粒子输运模拟方法[J]. 现代应用物理, 2022, 13: 010203 doi: 10.12061/j.issn.2095-6223.2022.010203

    Zhang Lingyu, Li Rui, Li Gang, et al. Particle transport simulation method based on constructive solid geometry and custom mesh[J]. Modern Applied Physics, 2022, 13: 010203 doi: 10.12061/j.issn.2095-6223.2022.010203
    [30] 朱金辉, 左应红, 刘利, 等. 蒙特卡罗方法在核爆辐射环境模拟中的应用与发展[J]. 现代应用物理, 2023, 14: 030104

    Zhu Jinhui, Zuo Yinghong, Liu Li, et al. Application and development of Monte Carlo method in simulation of nuclear explosion radiation environments[J]. Modern Applied Physics, 2023, 14: 030104
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  13
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-25
  • 修回日期:  2025-08-21
  • 录用日期:  2025-08-19
  • 网络出版日期:  2025-09-03

目录

    /

    返回文章
    返回