Thermal radiation transport and its wavelength sensitivity in intense space explosions
-
摘要: 通过建立热辐射脉冲输运模型,结合无量纲化处理与数值模拟方法,量化不同时刻、不同波段及传输距离下的热辐射能量速率与累积能量。重点分析大气透过率与空气密度比对热辐射能量分布的影响,揭示了强爆炸热辐射在空间传输中的规律及其对波长的敏感性。结果表明:时间维度上,热辐射累积能量随时间增加而增长,且增长速率逐渐降低,在火球复燃阶段时可见光波段热辐射累积能量占比略高,在火球冷却阶段则由红外波段占主导。空间维度上,随传输距离增长热辐射能分布规律为海拔越低热辐射能越小,直到一定传输距离后热辐射能空间分布趋于稳定。建立的模型可预测任意爆炸条件下特定位置的热辐射能量分布,为波长敏感材料的防护设计提供理论支撑。Abstract: This study establishes a thermal radiation pulse transport model to quantify the energy release rate and cumulative energy of thermal radiation across temporal variations, spectral bands, and propagation distances through dimensionless processing and numerical simulations. Special emphasis is placed on analyzing the influence of atmospheric transmittance and air density ratios on the spatial distribution of thermal radiation energy, revealing the propagation characteristics of strong explosion-induced thermal radiation in spatial transmission and its wavelength dependence. The results demonstrate that temporally, the cumulative thermal radiation energy increases with time while exhibiting a gradually decreasing growth rate. During the fireball re-ignition phase, the visible band contributes a marginally higher proportion to cumulative energy, whereas the infrared band dominates during the cooling phase. Spatially, the thermal radiation energy decreases with lower altitude as propagation distance extends, until reaching a stabilization threshold where the spatial distribution becomes relatively constant. The developed model enables prediction of thermal radiation energy distribution at specific locations under arbitrary explosion conditions, providing theoretical support for protective design of wavelength-sensitive materials.
-
表 1 输入参数
Table 1. Input parameter
explosive center
coordinates/mexplosive
equivalent/ktquery
time/squery point
coordinates/mquery
band/um(0 0 5000 )100 1 ( 1000 1000 0)0.9~1.0 (0 0 5000 )100 1 ( 1000 1000 10000 )0.9~1.0 (0 0 5000 )100 1 ( 1000 1000 0)0.2~4.5 (0 0 5000 )100 0.5 ( 1000 1000 0)0.2~4.5 (0 0 5000 )100 1.5 ( 1000 1000 0)0.2~4.5 (0 0 5000 )350 1 ( 1000 1000 0)0.2~4.5 表 2 输出参数
Table 2. Output parameter
full band
cumulative
energy/Jfull band
energy
rate/(J/s)UV band
Cumulative
energy /JUV band
energy
rate/(J/s)visible band
cumulative
energy/Jvisible band
energy
rate/(J/s)infrared band
cumulative
energy/Jinfrared band
energy
rate/(J/s)4.61e03 5.34e03 0 0 0 0 4.61e03 5.34e03 9.38e03 1.08e04 0 0 0 0 9.38e03 1.08e04 9.17e04 8.34e04 5.42e03 1.07e03 3.70e04 2.12e04 4.93e04 6.11e04 3.36e04 1.33e05 3.13e03 9.47e03 1.58e04 5.90e04 1.47e04 6.46e04 1.17e05 2.62e04 5.56e03 1.37e01 4.13e04 1.75e03 7.05e04 2.45e04 9.18e04 8.34e04 5.42e03 1.07e03 3.7e04 2.12e04 4.94e04 6.11e04 -
[1] Glasstone S, Dolan P J. The effects of nuclear weapons[M]. Washington: U. S. Dept. of Defense, 1977. [2] Marrs R E, Moss W C, Whitlock B. Thermal radiation from nuclear detonations in urban environments[R]. UCRL-TR-231593, 2007. [3] Pomraning G C. The equations of radiation hydrodynamics[M]. Oxford: Pergamon Press, 1973. [4] Brode H L, Hillendahl R W, Landshoff R K. Thermal radiation phenomena. Volume V. Radiation hydrodynamics of high temperature air. Final report[R]. Sunnyvale: Lockheed Missiles and Space Co. , 1967. [5] 乔登江. 核爆炸物理概论[M]. 北京: 国防工业出版社, 2003: 225-262Qiao Dengjiang. Conspectus on nuclear explosion physics[M]. Beijing: National Defense Industry Press, 2003: 225-262 [6] 高银军, 田宙, 闫凯, 等. 强爆炸光辐射脉冲辐照特征与爆炸当量的相关性[J]. 爆炸与冲击, 2017, 37(3):549-553 doi: 10.11883/1001-1455(2017)03-0549-05Gao Yinjun, Tian Zhou, Yan Kai, et al. Correlation between pulse irradiation characteristic of thermal radiation in intense explosion and explosion yield[J]. Explosion and Shock Waves, 2017, 37(3): 549-553 doi: 10.11883/1001-1455(2017)03-0549-05 [7] 田宙, 乔登江, 郭永辉. 不同当量强爆炸早期火球现象的数值模拟[J]. 爆炸与冲击, 2009, 29(4):408-412 doi: 10.3321/j.issn:1001-1455.2009.04.013Tian Zhou, Qiao Dengjiang, Guo Yonghui. Numerical simulation on early fireball phenomenology of strong explosions for different yields[J]. Explosion and Shock Waves, 2009, 29(4): 408-412 doi: 10.3321/j.issn:1001-1455.2009.04.013 [8] 田宙, 乔登江, 郭永辉. 不同高度强爆炸早期火球数值研究[J]. 兵工学报, 2009, 30(8):1078-1083 doi: 10.3321/j.issn:1000-1093.2009.08.014Tian Zhou, Qiao Dengjiang, Guo Yonghui. Numerical investigation of early fireball of strong explosion for different altitudes[J]. Acta Armamentarii, 2009, 30(8): 1078-1083 doi: 10.3321/j.issn:1000-1093.2009.08.014 [9] Wang Jianguo, Liu Li, Zuo Yinghong, et al. Research progress in numerical simulation of environmental parameters generated by the high-altitude nuclear explosions[J]. IEEE Transactions on Nuclear Science, 2025, 72(3): 884-900. doi: 10.1109/TNS.2025.3530013 [10] 张欣, 王博宇, 李君, 等. 核爆炸光热辐射研究进展[J]. 现代应用物理, 2025, 16:020101Zhang Xin, Wang Boyu, Li Jun, et al. Research progress of nuclear explosion photo thermal radiation[J]. Modern Applied Physics, 2025, 16: 020101 [11] 吴健辉, 杨坤涛, 张南洋生. 核爆炸光辐射探测中的大气传输性能研究[J]. 应用光学, 2008, 29(5):815-820 doi: 10.3969/j.issn.1002-2082.2008.05.034Wu Jianhui, Yang Kuntao, Zhang Nanyangsheng. Atmosphere transmission in detection of nuclear explosion light radiation[J]. Journal of Applied Optics, 2008, 29(5): 815-820 doi: 10.3969/j.issn.1002-2082.2008.05.034 [12] 李晓菲, 李帆, 尹禄高, 等. 低空核爆炸环境效应模拟研究[J]. 强度与环境, 2022, 49(5):48-55Li Xiaofei, Li Fan, Yin Lugao, et al. Simulation study on low-altitude nuclear explosion environment effect[J]. Structure & Environment Engineering, 2022, 49(5): 48-55 [13] 陈健华, 王心正, 谢龙生, 等. 均匀大气中的强爆炸一维辐射流体力学数值解[J]. 爆炸与冲击, 1981, 1(2):37-49 doi: 10.11883/1001-1455(1981)02-0037-13Chen Jianhua, Wang Xinzheng, Xie Longsheng, et al. An one-dimensional radiation hydrodynamic numerical solution for a strong explosion in uniform atmosphere[J]. Explosion and Shock Waves, 1981, 1(2): 37-49 doi: 10.11883/1001-1455(1981)02-0037-13 [14] 李金萍, 蔡友林, 刘其涛. 不同高度不同大气模式下红外图像仿真[J]. 红外技术, 2024, 46(10):1218-1223Li Jinping, Cai Youlin, Liu Qitao. Simulation of infrared images at different heights and atmospheric modes[J]. Infrared Technology, 2024, 46(10): 1218-1223 [15] 刘建斌, 吴健. 大气中球形粒子的散射特性研究[J]. 应用光学, 2005, 26(2):31-33 doi: 10.3969/j.issn.1002-2082.2005.02.009Liu Jianbin, Wu Jian. Study of scattering property of spherical particle in atmosphere[J]. Journal of Applied Optics, 2005, 26(2): 31-33 doi: 10.3969/j.issn.1002-2082.2005.02.009 [16] 吴健辉. 核爆炸光辐射特性及探测技术的理论与实验研究[D]. 武汉: 华中科技大学, 2009Wu Jianhui. Study on theory and experiment of the characteristics and detection technology of nuclear explosion radiation[D]. Wuhan: Huazhong University of Science and Technology, 2009 [17] Berk A, Bernstein L S, Robertson D C. MODTRAN: a moderate resolution model for LOWTRAN[R]. Burlington: Spectral Sciences. Inc. , 1987. [18] 毛克彪, 覃志豪. 大气辐射传输模型及MODTRAN中透过率计算[J]. 测绘与空间地理信息, 2004, 27(4):1-3 doi: 10.3969/j.issn.1672-5867.2004.04.001Mao Kebiao, Qin Zhihao. The transmission model of atmospheric radiation and the computation of transmittance of MODTRAN[J]. Geomatics & Spatial Information Technology, 2004, 27(4): 1-3 doi: 10.3969/j.issn.1672-5867.2004.04.001 [19] 王迪, 李承芳, 熊飞. 大气红外辐射传输的简便算法与MODTRAN的比较[J]. 光学技术, 2006, 32(s1):293-295,298 doi: 10.3321/j.issn:1002-1582.2006.z1.115Wang Di, Li Chengfang, Xiong Fei. The method of calculate the transmittance of infrared radiation through atmosphere and compared with MODTRAN[J]. Optical Technique, 2006, 32(s1): 293-295,298 doi: 10.3321/j.issn:1002-1582.2006.z1.115 [20] 贾全涛. 基于MODTRAN的大气透过率红外系统作用距离的研究[D]. 南京: 南京航空航天大学, 2012Jia Quantao. Research of the operating range of the IR imaging system expressed by atmospheric transmittance based on the MODTRAN[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 [21] 王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. The parameter manual book of high-altitude nuclear explosion effects[M]. Beijing: Atomic Energy Press, 2010 [22] 韩小祥, 李君, 张欣, 等. 核爆炸光辐射能量分布的模拟仿真研究[J]. 强激光与粒子束, 2024, 36:076003 doi: 10.11884/HPLPB202436.230406Han Xiaoxiang, Li Jun, Zhang Xin, et al. Simulation research on energy distribution of light radiation from nuclear explosion[J]. High Power Laser and Particle Beams, 2024, 36: 076003 doi: 10.11884/HPLPB202436.230406 [23] 连文浩, 王永杰, 杨小龙, 等. 基于MODTRAN的光波大气透射率模型设计[J]. 激光与红外, 2016, 46(12):1531-1535 doi: 10.3969/j.issn.1001-5078.2016.12.019Lian Wenhao, Wang Yongjie, Yang Xiaolong, et al. Design of light waves atmospheric transmittance model based on MODTRAN[J]. Laser & Infrared, 2016, 46(12): 1531-1535 doi: 10.3969/j.issn.1001-5078.2016.12.019 [24] 贾光亮, 宋雨宸. 基于MODTRAN的红外大气透过率计算方法研究[J]. 电子世界, 2018(1):71-72Jia Guangliang, Song Yuchen. Research on calculation method of infrared atmospheric transmittance based on MODTRAN[J]. Electronics World, 2018(1): 71-72 [25] 马鹤. 基于MODTRAN的复杂大气条件下红外系统作用距离计算[D]. 南京: 南京航空航天大学, 2013Ma He. Calculation of the operating range of infrared system under complex atmosphere condition based on the MODTRAN[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013 -