留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铽镓石榴石晶体的脉冲激光损伤

李俊 周强 王涛 蒋行 肖礼康 刘进 邱荣

李俊, 周强, 王涛, 等. 铽镓石榴石晶体的脉冲激光损伤[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250103
引用本文: 李俊, 周强, 王涛, 等. 铽镓石榴石晶体的脉冲激光损伤[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250103
Li Jun, Zhou Qiang, Wang Tao, et al. Research on pulsed laser damaged of TGG crystals[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250103
Citation: Li Jun, Zhou Qiang, Wang Tao, et al. Research on pulsed laser damaged of TGG crystals[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250103

铽镓石榴石晶体的脉冲激光损伤

doi: 10.11884/HPLPB202537.250103
基金项目: 中央引导地方科技发展资金项目(2023ZYDF001);
详细信息
    作者简介:

    李 俊,lijun992925@163.com

  • 中图分类号: O469

Research on pulsed laser damaged of TGG crystals

  • 摘要: 通过泵浦探测超快成像技术,采用固体激光器输出的1064 nm激光对铽镓石榴石(TGG)磁光元件的入射面、出射面进行了辐照损伤测试,研究了铽镓石榴石晶体镀膜元件在基频1064 nm脉冲激光辐照下的损伤特性及损伤后的动力学特性。结果表明,镀膜元件在出射面表现出较低的损伤阈值,而入射面和出射面损伤差异主要受激光诱导的等离子体效应影响。通过超快阴影成像研究发现,铽镓石榴石晶体入射面初始损伤主要来源于膜层杂质缺陷,在高能下会发生膜层的剥离;出射面损伤主要以基底材料中的杂质缺陷诱导损伤为主,损伤坑的尺寸随着激光能量的增加而逐渐增大。
  • 图  1  磁光元件损伤测试光路系统示意图

    Figure  1.  Schematic diagram of the optical path system for testing the damage of magneto-optical components

    图  2  TGG晶体实物图

    Figure  2.  Picture of TGG crystal

    图  3  TGG镀膜元件在1064 nm激光辐照下入射面及出射面的损伤概率曲线

    Figure  3.  The damage curves of the incident and exit plane of TGG coated components under 1064 nm laser irradiation

    图  4  1064 nm激光在膜层入射面诱导损伤光学显微图

    Figure  4.  Optical microscope image of 1064 nm laser-induced damage on the incident plane of the film layer

    图  5  1064 nm激光在膜层出射面诱导损伤光学显微图

    Figure  5.  Optical microscope image of 1064 nm laser-induced damage on the exit plane of the film layer

    图  6  TGG镀膜元件入射面损伤轮廓形貌

    Figure  6.  The damage profile morphologies of the incident plane of the TGG coated

    图  7  TGG镀膜元件入射面损伤轮廓形貌

    Figure  7.  The damage profile morphologies of the exit plane of the TGG coated

    图  8  1064 nm激光辐照下TGG镀膜元件入射面的时间阴影超快成像结果

    Figure  8.  The Ultra-fast imaging of temporal shadows test result of the incident plane of TGG coated components under 1064 nm laser irradiation

    图  9  1064 nm激光辐照下TGG晶体出射面的时间阴影超快成像结果

    Figure  9.  The Ultra-fast imaging of temporal shadows test result of the exit plane of TGG coated components under 1064 nm laser irradiation

    图  10  TGG镀膜元件入射面和出射面冲击波波前的距离-时间和速度-时间关系图

    Figure  10.  Distance-time and velocity-time relationship diagrams of shock wave fronts on the incident and exit plane of TGG coated components;

  • [1] 蔡伟, 伍樊成, 杨志勇, 等. 磁光调制技术与应用研究[J]. 激光与光电子学进展, 2015, 52:060003

    Cai Wei, Wu Fancheng, Yang Zhiyong, et al. Research on magneto-optic modulation technology and application[J]. Laser & Optoelectronics Progress, 2015, 52: 060003
    [2] 陈杰, 周圣明. 面向高功率激光隔离器的磁光材料 (特邀)[J]. 红外与激光工程, 2020, 49:20201072 doi: 10.3788/IRLA20201072

    Chen Jie, Zhou Shengming. Review of magneto-optic materials for high power laser isolators (Invited)[J]. Infrared and Laser Engineering, 2020, 49: 20201072 doi: 10.3788/IRLA20201072
    [3] 张昊天, 窦仁勤, 张庆礼, 等. 磁光晶体的研究进展及应用[J]. 人工晶体学报, 2020, 49(2):346-352,357 doi: 10.3969/j.issn.1000-985X.2020.02.027

    Zhang Haotian, Dou Renqin, Zhang Qingli, et al. Research progress and applications of magneto-optical crystal[J]. Journal of Synthetic Crystals, 2020, 49(2): 346-352,357 doi: 10.3969/j.issn.1000-985X.2020.02.027
    [4] 龙勇, 石自彬, 丁雨憧, 等. 大尺寸TGG晶体生长与性能研究[J]. 压电与声光, 2016, 38(3):433-436 doi: 10.11977/j.issn.1004-2474.2016.03.022

    Long Yong, Shi Zibing, Ding Yuchong, et al. Growth and characterization of large-size terbium gallium garnet single crystal[J]. Piezoelectrics & Acoustooptics, 2016, 38(3): 433-436 doi: 10.11977/j.issn.1004-2474.2016.03.022
    [5] Mironov E A, Zheleznov D S, Starobor A V, et al. Large-aperture Faraday isolator based on a terbium gallium garnet crystal[J]. Optics Letters, 2015, 40(12): 2794-2797. doi: 10.1364/OL.40.002794
    [6] 程勇, 陆益敏, 唐璜, 等. 光学薄膜抗激光损伤研究发展[J]. 强激光与粒子束, 2016, 28:070201 doi: 10.11884/HPLPB201628.070201

    Cheng Yong, Lu Yimin, Tang Huang, et al. Researches on laser damage resistance of optical films[J]. High Power Laser and Particle Beams, 2016, 28: 070201 doi: 10.11884/HPLPB201628.070201
    [7] Hopper R W, Uhlmann D R. Mechanism of inclusion damage in laser glass[J]. Journal of Applied Physics, 1970, 41(10): 4023-4037. doi: 10.1063/1.1658407
    [8] Salleo A, Genin F Y, Feit M D, et al. Energy deposition at front and rear surfaces during picosecond laser interaction with fused silica[J]. Applied Physics Letters, 2001, 78(19): 2840-2842. doi: 10.1063/1.1362332
    [9] Demos S G, DeMange P, Negres R A, et al. Investigation of the electronic and physical properties of defect structures responsible for laser-induced damage in DKDP crystals[J]. Optics Express, 2010, 18(13): 13788-13804. doi: 10.1364/OE.18.013788
    [10] Reyné S, Duchateau G, Natoli J Y, et al. Laser-induced damage of KDP crystals by 1ω nanosecond pulses: influence of crystal orientation[J]. Optics Express, 2009, 17(24): 21652-21665. doi: 10.1364/OE.17.021652
    [11] Guo Kesheng, Wang Yanzhi, Chen Ruiyi, et al. Laser-induced layers peeling of sputtering coatings at 1064 nm wavelength[J]. Scientific Reports, 2021, 11: 3783. doi: 10.1038/s41598-020-80304-2
    [12] 赵元安, 邵建达, 刘晓凤, 等. 光学元件的激光损伤问题[J]. 强激光与粒子束, 2022, 34:011004 doi: 10.11884/HPLPB202234.210331

    Zhao Yuanan, Shao Jianda, Liu Xiaofeng, et al. Tracking and understanding laser damage events in optics[J]. High Power Laser and Particle Beams, 2022, 34: 011004 doi: 10.11884/HPLPB202234.210331
    [13] Demos S G, Staggs M, Minoshima K, et al. Characterization of laser induced damage sites in optical components[J]. Optics Express, 2002, 10(25): 1444-1450. doi: 10.1364/OE.10.001444
    [14] Papernov S, Schmid A W, Oliver J B, et al. Damage thresholds and morphology of the front-and back-irradiated SiO2 thin films containing gold nanoparticles as artificial absorbing defects[C]//Proceedings of SPIE-The International Society for Optical Engineering. 2008: 159-164.
    [15] 向程江, 刘晓凤, 陶春先, 等. 1064 nm纳秒激光辐照下HfO2/SiO2增透膜损伤的动态过程研究[J]. 中国激光, 2024, 51:0803101 doi: 10.3788/CJL231071

    Xiang Chengjiang, Liu Xiaofeng, Tao Chuanxian, et al. Dynamic damage process of HfO2/SiO2 anti-reflection coatings under 1064 nm nanosecond laser irradiation[J]. Chinese Journal of Lasers, 2024, 51: 0803101 doi: 10.3788/CJL231071
    [16] Wang Yue, Shen Xiaoliang, Zhu Qifeng, et al. A planar waveguide in terbium gallium garnet crystal produced by carbon ion implantation[J]. Materials Research Express, 2019, 6: 086443. doi: 10.1088/2053-1591/ab22e4
    [17] Yasuhara R, Snetkov I, Starobor A, et al. Terbium gallium garnet ceramic Faraday rotator for high-power laser application[J]. Optics Letters, 2014, 39(5): 1145-1148. doi: 10.1364/OL.39.001145
    [18] 胡姝玲, 赵东伟, 牛燕雄, 等. 高功率光隔离器的热效应分析与优化[J]. 红外与激光工程, 2015, 44(11):3186-3190 doi: 10.3969/j.issn.1007-2276.2015.11.004

    Hu Shuling, Zhao Dongwei, Niu Yanxiong, et al. Thermal effects analysis and optimization design of high-power optical isolator[J]. Infrared and Laser Engineering, 2015, 44(11): 3186-3190 doi: 10.3969/j.issn.1007-2276.2015.11.004
    [19] Demos S G, Negres R A, Raman R N, et al. Comparison of material response in fused silica and KDP following exit surface laser-induced breakdown[C]//Laser-Induced Damage in Optical Materials. 2013: 132-137.
    [20] Sparks M, Duthler C J. Theory of infrared absorption and material failure in crystals containing inclusions[J]. Journal of Applied Physics, 1973, 44(7): 3038-3045. doi: 10.1063/1.1662703
    [21] DeMange P P, Negres R A, Radousky H B, et al. Differentiation of defect populations responsible for bulk laser-induced damage in potassium dihydrogen phosphate crystals[J]. Optical Engineering, 2006, 45: 104205. doi: 10.1117/1.2363166
    [22] Ashraf M, Shaikh N M, Kandhro G A, et al. Energy penetrated and inverse bremsstrahlung absorption co-efficient in laser ablated germanium plasma[J]. Journal of Molecular Structure, 2020, 1203: 127412. doi: 10.1016/j.molstruc.2019.127412
    [23] Yoo J H, Jeong S H, Greif R, et al. Explosive change in crater properties during high power nanosecond laser ablation of silicon[J]. Journal of Applied Physics, 2000, 88(3): 1638-1649. doi: 10.1063/1.373865
  • 加载中
图(10)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-28
  • 修回日期:  2025-06-12
  • 录用日期:  2025-05-30
  • 网络出版日期:  2025-07-07

目录

    /

    返回文章
    返回