留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X射线辐照铝箔热效应多尺度建模模拟研究

刘佳文 范杰清 赵强 范闯 张硕 张芳 薛碧曦 公延飞 郝建红 董志伟

刘佳文, 范杰清, 赵强, 等. X射线辐照铝箔热效应多尺度建模模拟研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250108
引用本文: 刘佳文, 范杰清, 赵强, 等. X射线辐照铝箔热效应多尺度建模模拟研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250108
Liu Jiawen, Fan Jieqing, Zhao Qiang, et al. Multi-scale modeling and simulation of thermal effects of X-ray irradiated aluminum foil[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250108
Citation: Liu Jiawen, Fan Jieqing, Zhao Qiang, et al. Multi-scale modeling and simulation of thermal effects of X-ray irradiated aluminum foil[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250108

X射线辐照铝箔热效应多尺度建模模拟研究

doi: 10.11884/HPLPB202537.250108
基金项目: 国家自然科学青年基金项目(12205024)
详细信息
    作者简介:

    刘佳文 ,FERRYchennwxi@163.com

    通讯作者:

    赵 强,zhaoq@iapcm.ac.cn

  • 中图分类号: O441.4

Multi-scale modeling and simulation of thermal effects of X-ray irradiated aluminum foil

  • 摘要: 通过多尺度建模模拟,同时考虑电子系统和晶格系统的温度变化,选用TTM-MD模型开展X射线与材料相互作用时的热效应仿真模拟,对X射线辐照铝箔的能量沉积及其在材料内的热传导过程进行深入研究。通过分析X射线能量对铝箔热效应的具体影响,得到了电子和晶格温度、材料密度等物理参数随时间的演化规律。在X射线辐照铝箔的过程中,X射线的能量被铝箔材料吸收并转化为热能,这种加热效应会导致其表面密度下降并逐渐向深层沉积;同时,辐照引起的温度升高还导致了铝箔内部压力的动态响应,先急剧增加后逐渐稳定。
  • 图  1  铝箔理论模型示意图(红色箭头表示X射线从材料右表面入射)

    Figure  1.  Schematic diagram of the aluminum foil theoretical model (the red arrow indicates that X-rays enter the material from its upper surface)

    图  2  铝箔热传导验证模型

    Figure  2.  Model for Verification of Aluminum Foil Heat Conduction

    图  3  仿真0.5 ps时材料温度随位置变化曲线与一维热方程的解析解曲线对照图

    Figure  3.  Temperature vs. Position at 0.5 ps: Numerical Simulation vs. Analytical Solution of 1D Heat Equation

    图  4  X射线照射下,铝材料内的电子温度随时间和位置的变化过程

    Figure  4.  The process of the variation of electron temperature within aluminum materials under X-ray irradiation with respect to time and position

    图  5  X射线照射下,铝材料的晶格温度随时间和位置的变化过程

    Figure  5.  The process of the variation of lattice temperature of aluminum materials with time and position under X-ray irradiation

    图  6  X射线照射下,铝材料的原子数密度随时间和位置的变化过程

    Figure  6.  The process of the variation of atomic number density of aluminum materials with time and position under X-ray irradiation

    图  7  X射线照射下,铝材料的压力随时间和位置的变化过程

    Figure  7.  The process of the variation of the stress of aluminum materials with time and position under X-ray irradiation

  • [1] 蔚振强. 高压下铝相变行为的分子动力学模拟[D]. 石家庄: 石家庄铁道大学, 2023

    Wei Zhenqiang. Phase transformation behavior of aluminum under high pressure: a molecular dynamics study[D]. Shijiazhuang: Shijiazhuang Railway University, 2023
    [2] 董进喜, 赵航, 周尧. 石墨薄膜对金属铝散热结构的作用影响分析[J]. 机械工程师, 2017(4):136-137

    Dong Jinxi, Zhao Hang, Zhou Yao. Analysis of the influence of graphite film on the heat dissipation structure of metal aluminum[J]. Mechanical Engineer, 2017(4): 136-137
    [3] 李尧, 范杰清, 张芳, 等. 电磁辐照金属铝膜材料释气效应研究[J]. 强激光与粒子束, 2021, 33:123008 doi: 10.11884/HPLPB202133.210191

    Li Yao, Fan Jieqing, Zhang Fang, et al. Study on outgassing effect of electromagnetic radiation on aluminum film[J]. High Power Laser and Particle Beams, 2021, 33: 123008 doi: 10.11884/HPLPB202133.210191
    [4] 谯兵, 郁鑫鑫, 何适, 等. 不同沉积温度Al2O3栅介质金刚石MOSFET器件研究[J]. 固体电子学研究与进展, 2024, 44(6):552-555,602

    Qiao Bing, Yu Xinxin, He Shi, et al. Research on diamond MOSFETs with Al2O3 gate dielectrics deposited at different temperatures[J]. Research & Progress of SSE, 2024, 44(6): 552-555,602
    [5] 李欣. 磁控溅射核辐射探测器窗口铝膜制备技术[D]. 西安: 西安工业大学, 2024

    Li Xin. Preparation technology of aluminum film deposited by magnetron sputtering used in the window of nuclear radiation detector[D]. Xi’an: Xi'an Technological University, 2024
    [6] 林钟石, 徐良, 钟文雨, 等. 金属铝材料的细胞毒性和刺激致敏性研究[J]. 医学信息, 2020, 33(19):62-67

    Lin Zhongshi, Xu Liang, Zhong Wenyu, et al. Study on cytotoxicity and irritation sensitization of metallic aluminum materials[J]. Medical Information, 2020, 33(19): 62-67
    [7] 余润洲, 张昆, 汤文辉. 高空强爆炸X射线辐照铝靶板动响应的数值模拟[J]. 爆炸与冲击, 2025, 45:013102

    Yu Runzhou, Zhang Kun, Tang Wenhui. A dynamic response simulation of aluminum plate target induced by high-altitude nuclear detonation X-ray[J]. Explosion and Shock Waves, 2025, 45: 013102
    [8] 许琰, 赖东显, 冯庭桂, 等. 辐射烧蚀铝箔数值模拟研究[J]. 强激光与粒子束, 2001, 13(3):329-332

    Xu Yan, Lai Dongxian, Feng Tinggui, et al. Nuerical simulation of radiation ablating aluminum foils[J]. High Power Laser and Particle Beams, 2001, 13(3): 329-332
    [9] 贾东昇, 何涛, 霍元明, 等. 金属塑性损伤力学模型研究进展[J]. 塑性工程学报, 2022, 29(1):11-17

    Jia Dongsheng, He Tao, Huo Yuanming, et al. Review on development of mechanics model of metal ductile damage[J]. Journal of Plasticity Engineering, 2022, 29(1): 11-17
    [10] Miloshevsky G. Ultrafast laser matter interactions: modeling approaches, challenges, and prospects[J]. Modelling and Simulation in Materials Science and Engineering, 2022, 30: 083001. doi: 10.1088/1361-651X/ac8abc
    [11] Rutherford A M, Duffy D M. The effect of electron-ion interactions on radiation damage simulations[J]. Journal of Physics: Condensed Matter, 2007, 19: 496201. doi: 10.1088/0953-8984/19/49/496201
    [12] Duffy D M, Rutherford A M. Including the effects of electronic stopping and electron-ion interactions in radiation damage simulations[J]. Journal of Physics: Condensed Matter, 2007, 19: 016207. doi: 10.1088/0953-8984/19/1/016207
    [13] Hayder M M, Moumita T M, Chowdhury S, et al. Effective electronic properties and coupling for two-temperature model-molecular dynamics simulation of ultrafast laser ablation of nickel[J]. Molecular Simulation, 2024, 50(14): 1140-1151. doi: 10.1080/08927022.2024.2385499
    [14] Castillejo M, Ossi P M, Zhigilei L. Lasers in materials science[M]. Cham: Springer, 2014.
    [15] Drude P. Zur Elektronentheorie der metalle[J]. Annalen der Physik, 1900, 306(3): 566-613. doi: 10.1002/andp.19003060312
    [16] Kubo R. The fluctuation-dissipation theorem[J]. Reports on Progress in Physics, 1966, 29(1): 255-284. doi: 10.1088/0034-4885/29/1/306
    [17] Thompson A P, Aktulga H M, Berger R, et al. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[J]. Computer Physics Communications, 2022, 271: 108171. doi: 10.1016/j.cpc.2021.108171
    [18] 叶方成, 陈燕, 蔡李彬, 等. 飞秒激光作用下铝膜烧蚀阈值的分子动力学模拟研究[J]. 中国激光, 2024, 51:1602408 doi: 10.3788/CJL231243

    Ye Fangcheng, Chen Yan, Cai Libin, et al. Molecular dynamics simulation study on ablation threshold of aluminum film under femtosecond laser irradiation[J]. Chinese Journal of Lasers, 2024, 51: 1602408 doi: 10.3788/CJL231243
    [19] Duff M J, Heighway P G, McHardy J D, et al. Atomistic investigation of cavitation and ablation in tantalum foils under irradiation with x-rays approaching 5 keV[J]. Physical Review B, 2022, 106: 024107.
    [20] 陶驷玖. Sinc方法求解一维热传导方程[D]. 长沙: 湖南师范大学, 2014

    Tao Sijiu. Sinc method for the heat equation[D]. Changsha: Hunan Normal University, 2014
    [21] 王家驷. 一维热传导方程的maple模拟[J]. 大学物理实验, 2008, 21(1):94-97

    Wang Jiasi. The simulation of one diomensional heat flow equation using maple software[J]. Physical Experiment of College, 2008, 21(1): 94-97
  • 加载中
图(7)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  43
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-02
  • 修回日期:  2025-07-03
  • 录用日期:  2025-07-05
  • 网络出版日期:  2025-07-23

目录

    /

    返回文章
    返回