留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双锥-平面线栅局部加密水平极化辐射波天线设计与实现

肖晶 吴刚 王海洋 谢霖燊 花见涛 石凌 王朋亮

肖晶, 吴刚, 王海洋, 等. 双锥-平面线栅局部加密水平极化辐射波天线设计与实现[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250111
引用本文: 肖晶, 吴刚, 王海洋, 等. 双锥-平面线栅局部加密水平极化辐射波天线设计与实现[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250111
Xiao Jing, Wu Gang, Wang Haiyang, et al. Design and implement of the local refined horizontally polarized radiation-wave antenna based on biconical-wire grating structure[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250111
Citation: Xiao Jing, Wu Gang, Wang Haiyang, et al. Design and implement of the local refined horizontally polarized radiation-wave antenna based on biconical-wire grating structure[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250111

双锥-平面线栅局部加密水平极化辐射波天线设计与实现

doi: 10.11884/HPLPB202537.250111
详细信息
    作者简介:

    肖 晶,xiaojing@nint.ac.cn

  • 中图分类号: TN011

Design and implement of the local refined horizontally polarized radiation-wave antenna based on biconical-wire grating structure

  • 摘要: 对于场地受限或被试系统尺寸较大的应用场景,采用基本构型的“倒V”形双锥-平面线栅水平极化辐射波天线可能无法满足要求。提出了一种基于双锥-平面线栅的新型水平极化辐射波天线,通过线栅天线局部加密布局减小了X轴方向线栅天线附近的辐射场泄露,提高了该方向辐射场极化分量的强度和均匀性;采用非对称结构设计,对基本构型天线+Y方向布局进行调整,预留了较大的调整空间。研究表明,调整线栅天线布局能够对馈入天线的能量进行重新分配。与基本构型的天线相比,当天线系统架设高度为20 m时,新结构天线在X方向(20, 0, 3.5)m处水平极化辐射场强度提高了约20%,可提供约20 m×20 m的工作空间;+Y方向和45°方向辐射场极化分量衰减相对较快,+Y方向辐射场等值线沿Y轴向最外侧天线收拢点压缩,呈“橄榄球”状。实际天线试验证明了新天线结构的可行性和有效性,所提方案还具有架设灵活方便、易于维护等特点,为水平极化电磁脉冲模拟器天线设计提供了新的思路。
  • 图  1  双锥-平面线栅天线基本构型

    Figure  1.  Typical structure of the biconical-wire grating antenna

    图  2  基于双锥-平面线栅的新结构天线

    Figure  2.  Schematic of the new antenna structure based on biconical-wire grating antenna

    图  3  (20, 0, 3.5) m处辐射场波形比较(归一化)

    Figure  3.  The E-fields of different structures at point (20, 0, 3.5) m (Normalized)

    图  4  不同天线结构激励端口处的电流

    Figure  4.  The currents at excitation ports of different antenna

    图  5  辐射场波形比较(归一化)

    Figure  5.  E-field comparison at different points (Normalized)

    图  6  距地面3.5 m高处天线的辐射场分布图

    Figure  6.  The E-field distribution of different antennas at 3.5 m above the ground

    图  7  天线实验布局

    Figure  7.  The arrangement of antenna experiment

    图  8  (11 10 3.5)m和(0, 0, 5)m处实测与仿真场波形(归一化)

    Figure  8.  E-field comparison of real measurement and results at point (11, 10, 3.5) m and (0, 0, 5)m (Normalized)

    表  1  不同结构天线场参数比较

    Table  1.   Comparison of E-field parameters for different antennas

    directionmeasurement
    points/m
    amplitude/(kV.m)rise time/nshalf rise time/nsAmplitude/(kV.m)rise time/nshalf rise time/ns
    locally densed- asymmetrically distributed antennatypical antenna structure
    Y axis(0, 0, 3.5)61.42.722.660.12.520.5
    (0, 10, 3.5)52.32.420.151.52.318.7
    (0, 15, 3.5)45.22.518.546.12.516.8
    (0, 20, 3.5)38.92.815.740.93.214.9
    X axis(10, 0, 3.5)51.52.720.151.02.418.2
    (15, 0, 3.5)42.02.517.938.22.316.0
    (20, 0, 3.5)29.52.615.524.62.211.1
    45°(10, 10, 3.5)47.42.818.547.72.916.9
    (15, 15, 3.5)38.83.115.640.12.914.1
    (20, 20, 3.5)29.72.813.036.43.211.8
    下载: 导出CSV
  • [1] 王建国, 刘利, 牛胜利, 等. 高空核爆炸环境数值模拟[J]. 现代应用物理, 2023, 14: 010101

    Wang Jianguo, Liu Li, Niu Shengli, et al. Numerical simulations of environmental parameters of high-altitude nuclear explosion[J]. Modern Applied Physics, 2024, 14: 010101
    [2] Zhu Xiangqin, Wu Wei, Chen Zaigao, et al. Analysis of fields of a new horizontally polarized EMP simulator[C]//Proceedings of 2024 Photonics & Electromagnetics Research Symposium. 2024: 1-4.
    [3] 朱湘琴, 吴伟, 王海洋. 大型双锥椭圆笼形天线关键参数的影响分析[J]. 电波科学学报, 2021, 36(1): 127-135

    Zhu Xiangqin, Wu Wei, Wang Haiyang. The effect analysis of key parameters of large biconical-ellipsoid cage antenna[J]. Chinese Journal of Radio Science, 2021, 36(1): 127-135
    [4] 朱湘琴, 吴伟, 吴刚. 垂直极化辐射波EMP模拟器辐射场空间分布特性分析[J]. 现代应用物理, 2022, 13: 030505 doi: 10.12061/j.issn.2095-6223.2022.030505

    Zhu Xiangqin, Wu Wei, Wu Gang. Analysis of spatial distribution characteristics of radiation field in vertically polarized EMP simulator[J]. Modern Applied Physics, 2022, 13: 030505 doi: 10.12061/j.issn.2095-6223.2022.030505
    [5] 贾伟, 陈志强, 郭帆, 等. 小型垂直极化辐射波强电磁脉冲模拟器研制[J]. 现代应用物理, 2023, 14: 020502

    Jia Wei, Chen Zhiqiang, Guo Fan, et al. Research and development of a small-scale vertical dipole EMP simulator[J]. Modern Applied Physics, 2023, 14: 020502
    [6] Mao Congguang, Zhou Hui, Chen Weiqing, et al. Early-time high-altitude electromagnetic pulse environment (E1) simulation with a bicone-cage antenna[J]. China Communications, 2013, 10(7): 12-18. doi: 10.1109/CC.2013.6570795
    [7] 孟粉霞, 夏洪富, 王建国. 电磁脉冲辐射波模拟器笼形天线的理论和数值研究[J]. 微波学报, 2007, 23(s1): 6-10 doi: 10.3969/j.issn.1005-6122.2007.z1.002

    Meng Fenxia, Xia Hongfu, Wang Jianguo. Theoretical and numerical studies on cage antenna of EMP radiating-wave simulator[J]. Journal of Microwaves, 2007, 23(s1): 6-10 doi: 10.3969/j.issn.1005-6122.2007.z1.002
    [8] Bailey V, Carboni V, Eichenberger C, et al. A 6-MV pulser to drive horizontally polarized EMP simulators[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2554-2558. doi: 10.1109/TPS.2010.2065245
    [9] 王皓琰, 李俊娜, 龚渝涵, 等. 双锥-线栅型水平极化天线辐射特性研究[J]. 现代应用物理, 2022, 13: 040502 doi: 10.12061/j.issn.2095-6223.2022.040502

    Wang Haoyan, Li Junna, Gong Yuhan, et al. Radiation characteristics of biconical-wire grid horizontally polarized antenna[J]. Modern Applied Physics, 2022, 13: 040502 doi: 10.12061/j.issn.2095-6223.2022.040502
    [10] 金晗冰, 寇科男, 戴弃君, 等. 水平极化有界波电磁脉冲模拟器仿真与实验研究[J]. 强激光与粒子束, 2022, 34: 123003 doi: 10.11884/HPLPB202234.220094

    Jin Hanbing, Kou Kenan, Dai Qijun, et al. Simulation and experiment study on a horizontally polarized bounded-wave electromagnetic pulse simulator[J]. High Power Laser and Particle Beams, 2022, 34: 123003 doi: 10.11884/HPLPB202234.220094
    [11] 肖晶, 吴刚, 谢霖燊, 等. 线栅参数对双锥-平面线栅水平极化辐射波模拟器的影响[J]. 兵工学报, 2021, 42(8): 1708-1715 doi: 10.3969/j.issn.1000-1093.2021.08.015

    Xiao Jing, Wu Gang, Xie Linshen, et al. Influence of wire grating on horizontally polarized radiated-wave simulator with biconical-wire grating structure[J]. Acta Armamentarii, 2021, 42(8): 1708-1715 doi: 10.3969/j.issn.1000-1093.2021.08.015
    [12] 肖晶, 吴刚, 王海洋, 等. 电磁脉冲辐射波模拟器双锥-平面线栅天线场分布规律[J]. 兵工学报, 2021, 42(12): 2684-2692

    Xiao Jing, Wu Gang, Wang Haiyang, et al. Field distribution of biconical-wire grating antenna for radiated-wave EMP simulator[J]. Acta Armamentarii, 2021, 42(12): 2684-2692
    [13] 肖晶, 吴刚, 王海洋, 等. 两种不同线栅结构的水平极化辐射波模拟器[J]. 强激光与粒子束, 2021, 33: 033004 doi: 10.11884/HPLPB202133.200281

    Xiao Jing, Wu Gang, Wang Haiyang, et al. Horizontally polarized radiation-wave simulator with two different wire grating structure[J]. High Power Laser and Particle Beams, 2021, 33: 033004 doi: 10.11884/HPLPB202133.200281
    [14] Du Lihang, Gao Cheng, Zhang Qi, et al. Simulation and evaluation of leakage electric field of bounded-wave simulator[J]. Journal of Electromagnetic Waves and Applications, 2019, 33(8): 959-971. doi: 10.1080/09205071.2019.1577184
    [15] Gu Yixing, Zhou Zhongyuan, Li Chengjie, et al. Research on simulation algorithm of bounded wave simulator based on nonuniform multiconductor transmission lines and electric dipole theory[J]. IEEE Transactions on Antennas and Propagation, 2025, 73(1): 351-361. doi: 10.1109/TAP.2024.3489961
    [16] 谢霖燊, 张国伟, 贾伟, 等. 符合HEMP早期波形标准的“春雷号”有界波模拟器[C]//中国核科学技术进展报告(第四卷). 2015: 316-321

    Xie Linshen, Zhang Guowei, Jia Wei, et al. A new “Spring-Thunder” bound-wave EMP simulator in accord with HEMP standard[C]//Progress Report on China Nuclear Science & Technology (Vol. 4). 2015: 316-321
    [17] 石跃武, 陈伟, 聂鑫, 等. 基于集成光学的兆伏每米强脉冲电场传感器研制[J]. 强激光与粒子束, 2024, 36: 043011 doi: 10.11884/HPLPB202436.230249

    Shi Yuewu, Chen Wei, Nie Xin, et al. Development of the integrated-optics-based sensor for MV/m intense pulse electric field[J]. High Power Laser and Particle Beams, 2024, 36: 043011 doi: 10.11884/HPLPB202436.230249
    [18] 刘逸飞, 马良, 程引会, 等. 基于光纤传输的灵敏度自校准脉冲电场测量系统[J]. 高电压技术, 2021, 47(4): 1478-1484

    Liu Yifei, Ma Liang, Cheng Yinhui, et al. Pulse electric field measurement system with sensitivity self-calibration based on optical fiber transmission[J]. High Voltage Engineering, 2021, 47(4): 1478-1484
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  32
  • HTML全文浏览量:  16
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-05
  • 修回日期:  2025-08-26
  • 录用日期:  2025-08-21
  • 网络出版日期:  2025-09-03

目录

    /

    返回文章
    返回