Design and implement of the local refined horizontally polarized radiation-wave antenna based on biconical-wire grating structure
-
摘要: 对于场地受限或被试系统尺寸较大的应用场景,采用基本构型的“倒V”形双锥-平面线栅水平极化辐射波天线可能无法满足要求。提出了一种基于双锥-平面线栅的新型水平极化辐射波天线,通过线栅天线局部加密布局减小了X轴方向线栅天线附近的辐射场泄露,提高了该方向辐射场极化分量的强度和均匀性;采用非对称结构设计,对基本构型天线+Y方向布局进行调整,预留了较大的调整空间。研究表明,调整线栅天线布局能够对馈入天线的能量进行重新分配。与基本构型的天线相比,当天线系统架设高度为20 m时,新结构天线在X方向(20, 0, 3.5)m处水平极化辐射场强度提高了约20%,可提供约20 m×20 m的工作空间;+Y方向和45°方向辐射场极化分量衰减相对较快,+Y方向辐射场等值线沿Y轴向最外侧天线收拢点压缩,呈“橄榄球”状。实际天线试验证明了新天线结构的可行性和有效性,所提方案还具有架设灵活方便、易于维护等特点,为水平极化电磁脉冲模拟器天线设计提供了新的思路。Abstract:
Background As for the electromagnetic pulse (EMP) effect experiment in limited space or for large under test system, the inverted V-shaped biconical-wire grating antenna based on typical structure may not meet the requirements.Purpose In this paper, a novel horizontally polarized radiation-wave antenna deriving from the typical structure is proposed.Methods Firstly, local refinement strategy is used to reduce the field leakage on X axis near the center of the grating wires. In this way, the polarization component of the electric fields (E-fields) in this direction is enhanced and the field uniformity is improved at the same time. Secondly, the grating antenna is asymmetrically designed and the layout of typical biconical-wire grating antenna in +Y direction is adjusted so as to provide enough space for adjustment.Results Results show that the energy fed to the antenna can be redistributed by adjusting the layout of the wire grating antenna. Compared with the typical biconical-wire grating antenna, the polarized E-field component of the proposed antenna on X axis at (20 0 3.2) m is increased about 20% when the antenna is set up to 20 m, and a work range about 20 m×20 m is provided. Meanwhile, the polarized E-field components in +Y and 45° directions are reduced relatively fast. The E-field contour lines in +Y direction of the new antenna are gradually compressed and converged to the antenna’s convergence points, looking as a rugby.Conclusions The feasibility and validity of the presented scheme has been tested by antenna experiment, which also presents the characteristics of convenience for installation and maintenance. -
表 1 不同结构天线场参数比较
Table 1. Comparison of E-field parameters for different antennas
direction measurement
points/mamplitude/(kV.m) rise time/ns half rise time/ns Amplitude/(kV.m) rise time/ns half rise time/ns locally densed- asymmetrically distributed antenna typical antenna structure Y axis (0, 0, 3.5) 61.4 2.7 22.6 60.1 2.5 20.5 (0, 10, 3.5) 52.3 2.4 20.1 51.5 2.3 18.7 (0, 15, 3.5) 45.2 2.5 18.5 46.1 2.5 16.8 (0, 20, 3.5) 38.9 2.8 15.7 40.9 3.2 14.9 X axis (10, 0, 3.5) 51.5 2.7 20.1 51.0 2.4 18.2 (15, 0, 3.5) 42.0 2.5 17.9 38.2 2.3 16.0 (20, 0, 3.5) 29.5 2.6 15.5 24.6 2.2 11.1 45° (10, 10, 3.5) 47.4 2.8 18.5 47.7 2.9 16.9 (15, 15, 3.5) 38.8 3.1 15.6 40.1 2.9 14.1 (20, 20, 3.5) 29.7 2.8 13.0 36.4 3.2 11.8 -
[1] 王建国, 刘利, 牛胜利, 等. 高空核爆炸环境数值模拟[J]. 现代应用物理, 2023, 14: 010101Wang Jianguo, Liu Li, Niu Shengli, et al. Numerical simulations of environmental parameters of high-altitude nuclear explosion[J]. Modern Applied Physics, 2024, 14: 010101 [2] Zhu Xiangqin, Wu Wei, Chen Zaigao, et al. Analysis of fields of a new horizontally polarized EMP simulator[C]//Proceedings of 2024 Photonics & Electromagnetics Research Symposium. 2024: 1-4. [3] 朱湘琴, 吴伟, 王海洋. 大型双锥椭圆笼形天线关键参数的影响分析[J]. 电波科学学报, 2021, 36(1): 127-135Zhu Xiangqin, Wu Wei, Wang Haiyang. The effect analysis of key parameters of large biconical-ellipsoid cage antenna[J]. Chinese Journal of Radio Science, 2021, 36(1): 127-135 [4] 朱湘琴, 吴伟, 吴刚. 垂直极化辐射波EMP模拟器辐射场空间分布特性分析[J]. 现代应用物理, 2022, 13: 030505 doi: 10.12061/j.issn.2095-6223.2022.030505Zhu Xiangqin, Wu Wei, Wu Gang. Analysis of spatial distribution characteristics of radiation field in vertically polarized EMP simulator[J]. Modern Applied Physics, 2022, 13: 030505 doi: 10.12061/j.issn.2095-6223.2022.030505 [5] 贾伟, 陈志强, 郭帆, 等. 小型垂直极化辐射波强电磁脉冲模拟器研制[J]. 现代应用物理, 2023, 14: 020502Jia Wei, Chen Zhiqiang, Guo Fan, et al. Research and development of a small-scale vertical dipole EMP simulator[J]. Modern Applied Physics, 2023, 14: 020502 [6] Mao Congguang, Zhou Hui, Chen Weiqing, et al. Early-time high-altitude electromagnetic pulse environment (E1) simulation with a bicone-cage antenna[J]. China Communications, 2013, 10(7): 12-18. doi: 10.1109/CC.2013.6570795 [7] 孟粉霞, 夏洪富, 王建国. 电磁脉冲辐射波模拟器笼形天线的理论和数值研究[J]. 微波学报, 2007, 23(s1): 6-10 doi: 10.3969/j.issn.1005-6122.2007.z1.002Meng Fenxia, Xia Hongfu, Wang Jianguo. Theoretical and numerical studies on cage antenna of EMP radiating-wave simulator[J]. Journal of Microwaves, 2007, 23(s1): 6-10 doi: 10.3969/j.issn.1005-6122.2007.z1.002 [8] Bailey V, Carboni V, Eichenberger C, et al. A 6-MV pulser to drive horizontally polarized EMP simulators[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2554-2558. doi: 10.1109/TPS.2010.2065245 [9] 王皓琰, 李俊娜, 龚渝涵, 等. 双锥-线栅型水平极化天线辐射特性研究[J]. 现代应用物理, 2022, 13: 040502 doi: 10.12061/j.issn.2095-6223.2022.040502Wang Haoyan, Li Junna, Gong Yuhan, et al. Radiation characteristics of biconical-wire grid horizontally polarized antenna[J]. Modern Applied Physics, 2022, 13: 040502 doi: 10.12061/j.issn.2095-6223.2022.040502 [10] 金晗冰, 寇科男, 戴弃君, 等. 水平极化有界波电磁脉冲模拟器仿真与实验研究[J]. 强激光与粒子束, 2022, 34: 123003 doi: 10.11884/HPLPB202234.220094Jin Hanbing, Kou Kenan, Dai Qijun, et al. Simulation and experiment study on a horizontally polarized bounded-wave electromagnetic pulse simulator[J]. High Power Laser and Particle Beams, 2022, 34: 123003 doi: 10.11884/HPLPB202234.220094 [11] 肖晶, 吴刚, 谢霖燊, 等. 线栅参数对双锥-平面线栅水平极化辐射波模拟器的影响[J]. 兵工学报, 2021, 42(8): 1708-1715 doi: 10.3969/j.issn.1000-1093.2021.08.015Xiao Jing, Wu Gang, Xie Linshen, et al. Influence of wire grating on horizontally polarized radiated-wave simulator with biconical-wire grating structure[J]. Acta Armamentarii, 2021, 42(8): 1708-1715 doi: 10.3969/j.issn.1000-1093.2021.08.015 [12] 肖晶, 吴刚, 王海洋, 等. 电磁脉冲辐射波模拟器双锥-平面线栅天线场分布规律[J]. 兵工学报, 2021, 42(12): 2684-2692Xiao Jing, Wu Gang, Wang Haiyang, et al. Field distribution of biconical-wire grating antenna for radiated-wave EMP simulator[J]. Acta Armamentarii, 2021, 42(12): 2684-2692 [13] 肖晶, 吴刚, 王海洋, 等. 两种不同线栅结构的水平极化辐射波模拟器[J]. 强激光与粒子束, 2021, 33: 033004 doi: 10.11884/HPLPB202133.200281Xiao Jing, Wu Gang, Wang Haiyang, et al. Horizontally polarized radiation-wave simulator with two different wire grating structure[J]. High Power Laser and Particle Beams, 2021, 33: 033004 doi: 10.11884/HPLPB202133.200281 [14] Du Lihang, Gao Cheng, Zhang Qi, et al. Simulation and evaluation of leakage electric field of bounded-wave simulator[J]. Journal of Electromagnetic Waves and Applications, 2019, 33(8): 959-971. doi: 10.1080/09205071.2019.1577184 [15] Gu Yixing, Zhou Zhongyuan, Li Chengjie, et al. Research on simulation algorithm of bounded wave simulator based on nonuniform multiconductor transmission lines and electric dipole theory[J]. IEEE Transactions on Antennas and Propagation, 2025, 73(1): 351-361. doi: 10.1109/TAP.2024.3489961 [16] 谢霖燊, 张国伟, 贾伟, 等. 符合HEMP早期波形标准的“春雷号”有界波模拟器[C]//中国核科学技术进展报告(第四卷). 2015: 316-321Xie Linshen, Zhang Guowei, Jia Wei, et al. A new “Spring-Thunder” bound-wave EMP simulator in accord with HEMP standard[C]//Progress Report on China Nuclear Science & Technology (Vol. 4). 2015: 316-321 [17] 石跃武, 陈伟, 聂鑫, 等. 基于集成光学的兆伏每米强脉冲电场传感器研制[J]. 强激光与粒子束, 2024, 36: 043011 doi: 10.11884/HPLPB202436.230249Shi Yuewu, Chen Wei, Nie Xin, et al. Development of the integrated-optics-based sensor for MV/m intense pulse electric field[J]. High Power Laser and Particle Beams, 2024, 36: 043011 doi: 10.11884/HPLPB202436.230249 [18] 刘逸飞, 马良, 程引会, 等. 基于光纤传输的灵敏度自校准脉冲电场测量系统[J]. 高电压技术, 2021, 47(4): 1478-1484Liu Yifei, Ma Liang, Cheng Yinhui, et al. Pulse electric field measurement system with sensitivity self-calibration based on optical fiber transmission[J]. High Voltage Engineering, 2021, 47(4): 1478-1484 -