留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯/ZnO非线性导电材料智能电磁防护研究

李宏飞 陈亚洲 曲兆明 曹纬 李延松

李宏飞, 陈亚洲, 曲兆明, 等. 石墨烯/ZnO非线性导电材料智能电磁防护研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250119
引用本文: 李宏飞, 陈亚洲, 曲兆明, 等. 石墨烯/ZnO非线性导电材料智能电磁防护研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250119
Li Hongfei, Chen Yazhou, Zhaoming Qu, et al. Graphene-based nonlinear conducting materials for smart electromagnetic protection[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250119
Citation: Li Hongfei, Chen Yazhou, Zhaoming Qu, et al. Graphene-based nonlinear conducting materials for smart electromagnetic protection[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250119

石墨烯/ZnO非线性导电材料智能电磁防护研究

doi: 10.11884/HPLPB202537.250119
基金项目: 国家自然科学基金项目(52077220)
详细信息
    作者简介:

    李宏飞,hongfeili0704@126.com

    通讯作者:

    陈亚洲,chen_yazhou@sina.com

  • 中图分类号: TB332

Graphene-based nonlinear conducting materials for smart electromagnetic protection

  • 摘要: 采用溶剂热法合成了氧化锌包覆石墨烯的纳米复合材料。SEM表征显示,氧化锌纳米颗粒均匀覆盖在石墨烯表面,能充分发挥氧化锌的场致相变性能和石墨烯的导电性能及大比表面积优势。制备的GN/ZnO复合材料在质量分数5~8 wt%时,展现出显著的非线性导电特性,其相变阈值电场为0.19~0.53 kV/mm,非线性系数α为4.01~5.44。实验证实,该材料在低电场下保持绝缘性,高电场下迅速转变为高导电状态,抑制静电放电。不同浓度的复合材料展现出不同的开关场强,可根据操作条件和需求调整材料性能。这为开发智能电磁防护材料提供了理论依据和实践指导。
  • 图  1  化学浴沉积法制备GN/ZnO复合涂层

    Figure  1.  Preparation of GN/ZnO composites coating via chemical bath deposition

    图  2  合成ZnO粉末及GN/ZnO杂化粉末的SEM图像

    Figure  2.  SEM image of ZnO powders and GN/ZnO hybrid powders

    图  3  GN/ZnO杂化粉末的EDS定量分析

    Figure  3.  EDS mapping of GN/ZnO hybrid powders

    图  4  GN/ZnO杂化粉末的XRD谱

    Figure  4.  XRD pattern of GN/ZnO hybrid powders

    图  5  GN/ZnO复合材料的非线性导电曲线

    Figure  5.  Nonlinear conductivity curves of GN/ZnO composites

    图  6  GN/ZnO复合材料的重复性测试

    Figure  6.  Repeatability test curves of GN/ZnO composites

    图  7  GN/ZnO复合材料的Ebα

    Figure  7.  Eb and α of GN/ZnO composites

    图  8  GN/ZnO复合材料的非线性传导机理

    Figure  8.  Nonlinear conduction mechanism of GN/ZnO composites

    图  9  GN/ZnO复合材料强电磁场响应测试装置图

    Figure  9.  Pulse field response test device for GN/ZnO composites

    图  10  GN/ZnO复合材料的强场防护开关特性

    Figure  10.  Switching properties of GN/ZnO composites for strong-field protection

  • [1] 孙国至, 刘尚合, 陈京平, 等. 战场电磁环境效应对信息化战争的影响[J]. 军事运筹与系统工程, 2006, 20(3): 43-47

    Sun Guozhi, Liu Shanghe, Chen Jingping, et al. The effects on the information warfare of the electromagnetic environments effectiveness in the battle field[J]. Military Operations Research and Assessment, 2006, 20(3): 43-47
    [2] 刘尚合, 刘卫东. 电磁兼容与电磁防护相关研究进展[J]. 高电压技术, 2014, 40(6): 1605-1613

    Liu Shanghe, Liu Weidong. Progress of relevant research on electromagnetic compatibility and electromagnetic protection[J]. High Voltage Engineering, 2014, 40(6): 1605-1613
    [3] 赵蒙, 达新宇, 张亚普. 电磁脉冲武器及其防护技术概述[J]. 飞航导弹, 2014(5): 33-37

    Zhao Meng, Da Xinyu, Zhang Yapu. An overview of electromagnetic pulse weapons and their protective technologies[J]. Aerospace Technology, 2014(5): 33-37
    [4] 谭志良, 胡小锋, 毕军建, 等. 电磁脉冲防护理论与技术[M]. 北京: 国防工业出版社, 2013

    Tan Zhiliang, Hu Xiaofeng, Bi Junjian, et al. Electromagnetic pulse protection theory and technology[M]. Beijing: National Defense Industry Press, 2013
    [5] 陈京平, 刘尚合, 谭志良, 等. ESD脉冲对集成电路损伤效应的实验研究[J]. 高电压技术, 2007, 33(3): 121-124

    Chen Jingping, Liu Shanghe, Tan Zhiliang, et al. Experimental study of the damage effects of integrated circuits stressed with ESD pulse[J]. High Voltage Engineering, 2007, 33(3): 121-124
    [6] 曲兆明, 王庆国. 导电导磁屏蔽复合材料的研究进展[J]. 材料导报, 2011, 25(1): 138-141

    Qu Zhaoming, Wang Qingguo. Development of conductive and magnetic shielding composites[J]. Materials Review, 2011, 25(1): 138-141
    [7] 雷忆三, 孙丽君. 智能电磁防护材料及技术研究进展[J]. 现代工业经济和信息化, 2012, 2(18): 74-77

    Lei Yisan, Sun Lijun. Research on status and development trend of intelligent electromagnetic protection materials and technology[J]. Modern Industrial Economy and Informationization, 2012, 2(18): 74-77
    [8] Hou Xin, Feng Xuerong, Jiang Ke, et al. Recent progress in smart electromagnetic interference shielding materials[J]. Journal of Materials Science & Technology, 2024, 186: 256-271.
    [9] 边永亮, 王永胜, 郭文卿, 等. 关于智能电磁防护材料及技术的研究[J]. 信息系统工程, 2022(4): 145-148

    Bian Yongliang, Wang Yongsheng, Guo Wenqing, et al. Research on intelligent electromagnetic protection materials and technologies[J]. Information System Engineering, 2022(4): 145-148
    [10] Huang Xiaoyan, Han Lu, Yang Xiao, et al. Smart dielectric materials for next-generation electrical insulation[J]. iEnergy, 2022, 1(1): 19-49. doi: 10.23919/IEN.2022.0007
    [11] 刘嘉玮, 王建江, 许宝才. 场致电阻材料在强电磁脉冲防护中的应用展望[J]. 功能材料, 2017, 48(10): 10029-10035

    Liu Jiawei, Wang Jianjiang, Xu Baocai. Application and prospect of field induced resistance material in strong electromagnetic pulse protection[J]. Journal of Functional Materials, 2017, 48(10): 10029-10035
    [12] Daughton J M. Magnetoresistive memory technology[J]. Thin Solid Films, 1992, 216(1): 162-168. doi: 10.1016/0040-6090(92)90888-I
    [13] Mazumder M R H, Govindaraj P, Salim N, et al. Digitalization of composite manufacturing using nanomaterials based piezoresistive sensors[J]. Composites Part A: Applied Science and Manufacturing, 2025, 188: 108578. doi: 10.1016/j.compositesa.2024.108578
    [14] Yang L X, Rohde G, Hanff K, et al. Bypassing the structural bottleneck in the ultrafast melting of electronic order[J]. Physical Review Letters, 2020, 125: 266402. doi: 10.1103/PhysRevLett.125.266402
    [15] Fan Yicheng, Kang Qin, Zhang Kun, et al. Design criterion based on the cohesive energy and defect patterns of VO2 thermally induced phase transition materials[J]. Ceramics International, 2020, 46(9): 13615-13621. doi: 10.1016/j.ceramint.2020.02.147
    [16] Yang Wenhu, Wang Jian, Luo Suibin, et al. ZnO-decorated carbon nanotube hybrids as fillers leading to reversible nonlinear I-V behavior of polymer composites for device protection[J]. ACS Applied Materials & Interfaces, 2016, 8(51): 35545-35551.
    [17] Zhang Guozhen, Wu Hao, Chen C, et al. Transparent capacitors based on nanolaminate Al2O3/TiO2/Al2O3 with H2O and O3 as oxidizers[J]. Applied Physics Letters, 2014, 104: 163503. doi: 10.1063/1.4872470
    [18] Yoon S H, Kim S H, Kim D Y. Correlation between I (current)-V (voltage) characteristics and thermally stimulated depolarization current of Mn-doped BaTiO3 multilayer ceramic capacitor[J]. Journal of Applied Physics, 2013, 114: 074102. doi: 10.1063/1.4818947
    [19] Zhang Guozhen, Wu Hao, Chen Chao, et al. Transparent and flexible capacitors based on nanolaminate Al2O3/TiO2/Al2O3[J]. Nanoscale Research Letters, 2015, 10: 76. doi: 10.1186/s11671-015-0784-8
  • 加载中
图(10)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  9
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-10
  • 修回日期:  2025-09-18
  • 录用日期:  2025-09-01
  • 网络出版日期:  2025-09-29

目录

    /

    返回文章
    返回