留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时序卷积网络与双向长短期记忆网络融合的电磁信号调制识别算法

黄敏 王雅琪 马立云 王玉明

黄敏, 王雅琪, 马立云, 等. 基于时序卷积网络与双向长短期记忆网络融合的电磁信号调制识别算法[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250126
引用本文: 黄敏, 王雅琪, 马立云, 等. 基于时序卷积网络与双向长短期记忆网络融合的电磁信号调制识别算法[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250126
Huang Min, Wang Yaqi, Ma Liyun, et al. Electromagnetic signal modulation recognition algorithm based on fusion of temporal convolutional network and bidirectional long-short-term memory network[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250126
Citation: Huang Min, Wang Yaqi, Ma Liyun, et al. Electromagnetic signal modulation recognition algorithm based on fusion of temporal convolutional network and bidirectional long-short-term memory network[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250126

基于时序卷积网络与双向长短期记忆网络融合的电磁信号调制识别算法

doi: 10.11884/HPLPB202537.250126
基金项目: 电磁环境效应重点实验室基础科研计划项目(JCKYS2023DC02); 电磁环境效应重点实验室基金项目(6142205240201)
详细信息
    作者简介:

    黄 敏,huangmin@hebust.edu.cn

    通讯作者:

    王玉明,wangyuming@aeu.edu.cn

  • 中图分类号: TP181

Electromagnetic signal modulation recognition algorithm based on fusion of temporal convolutional network and bidirectional long-short-term memory network

  • 摘要: 针对电磁频谱环境复杂多域这一问题,提出了基于时序卷积网络与双向长短期记忆网络融合的电磁信号调制识别算法。首先,设计了双向长短期记忆网络(Bi-LSTM)来捕捉时序数据的双向依赖关系,提升对复杂调制模式的判别能力;其次,将时序卷积网络(TCN)与Bi-LSTM通过级联架构进行融合,实现了分层时序特征提取与双向动态建模;最后,加入改进的局部敏感哈希注意力机制(LSH Attention),降低注意力矩阵复杂度的同时提高识别的精准度。数据预处理方面提出了一种KNN-BH处理方法,能够提高频谱特征的提取精度。在RML2016.10a数据集上的实验结果表明,相较7个对比算法,TCN-LSTM-LSH Attention算法的识别效果最佳,其对11类信号调制的整体识别准确率达到64.71%。证实了该算法在电磁频谱应用中的潜能与价值。
  • 图  1  因果卷积结构

    Figure  1.  Structure of causal convolution

    图  2  感受野扩大流程

    Figure  2.  Receptive field dilation process

    图  3  Bi-LSTM算法流程

    Figure  3.  Bi-LSTM algorithm flow

    图  4  LSH Attention原理流程

    Figure  4.  Principle process of LSH Attention

    图  5  哈希函数原理

    Figure  5.  Hash function principle

    图  6  RevNet主要结构

    Figure  6.  Main structure of RevNet

    图  7  TCN-LSTM-LSH Attention算法原理图

    Figure  7.  The schematic diagram of TCN-LSTM-LSH Attention

    图  8  加窗前后频谱泄漏对比图

    Figure  8.  Comparison chart of spectrum leakage before and after windowing

    图  9  实验流程图

    Figure  9.  Experimental flow chart

    图  10  各个算法对电磁信号调制识别的概率以及召回率

    Figure  10.  Accuracy of electromagnetic signal modulation recognition and recall by each algorithm

    表  1  传统注意力机制与LSH Attention对比

    Table  1.   Comparison of traditional Attention and LSH Attention

    characteristictraditional attentionLSH Attention
    time complexityO(L2)O(LlogL)
    space complexityO(L2)O(L)
    下载: 导出CSV

    表  2  对比实验数据

    Table  2.   Comparison of experimental data

    algorithm overall accuracy/% highest accuracy/% inference time/ms recall/%
    CNN 51.74 81.89 251 51.66
    LSTM 58.1 87.59 368 58.28
    TCN 59.2 90.23 279 69.43
    LSTM-LSH attention 59.6 90.6 506 60.08
    CNN-LSTM 60.48 91.08 439 60.42
    CNN-LSTM-LSH attention 61 91.54 597 61.15
    TCN-LSTM 62.25 93.16 572 62.65
    TCN-LSTM-LSH attention 64.71 96.46 603 64.81
    下载: 导出CSV
  • [1] 阮天宸, 吴启晖, 赵世瑾, 等. 认知学习: 电磁频谱空间机器学习新范式[J]. 电子学报, 2023, 51(6): 1430-1442

    Ruan Tianchen, Wu Qihui, Zhao Shijin, et al. Cognitive learning: a new paradigm for machine learning in electromagnetic spectrum environment[J]. Acta Electronica Sinica, 2023, 51(6): 1430-1442
    [2] 卢河旭, 陈丹伟, 罗圣美. 基于YOLOv5架构改进的电磁信号目标识别方法[J]. 计算机测量与控制, 2024, 32(11): 243-250,294

    Lu Hexu, Chen Danwei, Luo Shengmei. An improved recognition method for electromagnetic signal targets based on YOLOv5 architecture[J]. Computer Measurement & Control, 2024, 32(11): 243-250,294
    [3] 陆欢, 周顺勇, 彭梓洋, 等. 无线电信号的调制识别研究进展[J]. 四川轻化工大学学报(自然科学版), 2024, 37(6): 31-42

    Lu Huan, Zhou Shunyong, Peng Ziyang, et al. Research progress on modulation identification of radio signals[J]. Journal of Sichuan University of Science & Engineering (Natural Science Edition), 2024, 37(6): 31-42
    [4] Weaver C S, Cole C A, Krumland R B, et al. The automatic classification of modulation types by pattern recognition[R]. Palo Alto: Defense Technical Information Center, 1969.
    [5] Rajendran S, Meert W, Giustiniano D, et al. Deep learning models for wireless signal classification with distributed low-cost spectrum sensors[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(3): 433-445. doi: 10.1109/TCCN.2018.2835460
    [6] Yang Cheng, He Zhimin, Peng Yang, et al. Deep learning aided method for automatic modulation recognition[J]. IEEE Access, 2019, 7: 109063-109068. doi: 10.1109/ACCESS.2019.2933448
    [7] 秦博伟, 蒋磊, 许华, 等. 基于残差生成对抗网络的调制识别算法[J]. 系统工程与电子技术, 2022, 44(6): 2019-2026 doi: 10.12305/j.issn.1001-506X.2022.06.30

    Qin Bowei, Jiang Lei, Xu Hua, et al. Modulation recognition algorithm based on residual generation adversarial network[J]. Systems Engineering and Electronics, 2022, 44(6): 2019-2026 doi: 10.12305/j.issn.1001-506X.2022.06.30
    [8] 张航, 吴泓霖, 余勤, 等. 基于多特征信息的深度学习网络调制识别算法[J]. 计算机工程与设计, 2022, 43(10): 2762-2768

    Zhang Hang, Wu Honglin, Yu Qin, et al. Modulation recognition algorithm for multiple feature information based on deep learning[J]. Computer Engineering and Design, 2022, 43(10): 2762-2768
    [9] Ding Yixin. Automatic modulation recognition of communication signal based on wavelet transform combined with singular value and NCA-CNN[C]//Wireless and Optical Communications Conference (WOCC). 2023: 1-6.
    [10] Zhang Bojun. Multimodal machine learning algorithm for enhanced signal modulation recognition in wireless communication systems[C]//IEEE 49th Conference on Local Computer Networks (LCN). 2024: 1-6.
    [11] Lea C, Flynn M D, Vidal R, et al. Temporal convolutional networks for action segmentation and detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017: 1003-1012.
    [12] 郝建华. 基于深度学习的时间序列预测算法研究[D]. 济南: 山东师范大学, 2024: 89-91

    Hao Jianhua. Research on time series forecasting algorithms based on deep learning[D]. Ji’nan: Shandong Normal University, 2024: 89-91
    [13] Qiao Junbo, Han Suai, Sun Zeyang. Modulated recognition and function realization based on deep learning[C]//IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). 2023: 1-6.
    [14] 刘佳旭, 白再冉, 张艳菊. 基于BiLSTM-Attention的议论文篇章要素识别[J]. 计算机系统应用, 2025, 34(5): 202-211

    Liu Jiaxu, Bai Zairan, Zhang Yanju. Discourse elements identification in argumentative essays based on BiLSTM-attention[J]. Computer Systems & Applications, 2025, 34(5): 202-211
    [15] 胡国乐, 李鹏, 林事力, 等. 基于相位变换和CNN-BiLSTM的自动调制识别算法[J]. 电讯技术, 2024, 64(11): 1780-1787

    Hu Guole, Li Peng, Lin Shili, et al. An automatic modulation recognition algorithm based on phase transformation and CNN-BiLSTM[J]. Telecommunication Engineering, 2024, 64(11): 1780-1787
    [16] 房虹辰. 基于LSTM和CNN的频谱感知方法研究[D]. 银川: 宁夏大学, 2022: 23-25

    Fang Hongchen. Research on spectrum sensing method based on LSTM and CNN[D]. Yinchuan: Ningxia University, 2022: 23-25
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  11
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-12
  • 修回日期:  2025-08-26
  • 录用日期:  2025-08-21
  • 网络出版日期:  2025-09-06

目录

    /

    返回文章
    返回