Electromagnetic signal modulation recognition algorithm based on fusion of temporal convolutional network and bidirectional long-short-term memory network
-
摘要: 针对电磁频谱环境复杂多域这一问题,提出了基于时序卷积网络与双向长短期记忆网络融合的电磁信号调制识别算法。首先,设计了双向长短期记忆网络(Bi-LSTM)来捕捉时序数据的双向依赖关系,提升对复杂调制模式的判别能力;其次,将时序卷积网络(TCN)与Bi-LSTM通过级联架构进行融合,实现了分层时序特征提取与双向动态建模;最后,加入改进的局部敏感哈希注意力机制(LSH Attention),降低注意力矩阵复杂度的同时提高识别的精准度。数据预处理方面提出了一种KNN-BH处理方法,能够提高频谱特征的提取精度。在RML2016.10a数据集上的实验结果表明,相较7个对比算法,TCN-LSTM-LSH Attention算法的识别效果最佳,其对11类信号调制的整体识别准确率达到64.71%。证实了该算法在电磁频谱应用中的潜能与价值。Abstract:
Background With the increasing complexity of electromagnetic spectrum, efficient signal modulation identification algorithm is beneficial to electromagnetic spectrum management, which is very important for modern communication system. However, traditional algorithms have limitations in feature extraction and lack of accuracy.Purpose This paper presents an improved algorithm for electromagnetic signal modulation recognition. This algorithm integrates the temporal convolution network (TCN), the bidirectional long-short-term memory (Bi-LSTM) network, and the improved locality-sensitive hashing attention mechanism (LSH Attention) to enhance the accuracy of recognition.Methods Firstly, Bi-LSTM is designed to capture the bidirectional dependency of time series data and enhance the discrimination ability for complex modulation modes. Secondly, TCN and Bi-LSTM are fused through a cascaded architecture to achieve hierarchical time series feature extraction and bidirectional dynamic modeling. Finally, LSH Attention is added to reduce the complexity of the attention matrix while improving the recognition accuracy. In terms of data preprocessing, a KNN-BH processing method is proposed, which can improve the extraction accuracy of spectral features.Results Experimental results on the RML2016.10a dataset show that compared with seven baseline algorithms, the TCN-LSTM-LSH Attention algorithm has the best recognition performance, with an overall recognition accuracy of 64.71% for 11 types of signal modulations.Conclusions This algorithm demonstrates great potential in electromagnetic spectrum applications and is highly suitable for use in high-precision modulation recognition tasks in communication systems. -
表 1 传统注意力机制与LSH Attention对比
Table 1. Comparison of traditional Attention and LSH Attention
characteristic traditional attention LSH Attention time complexity O(L2) O(LlogL) space complexity O(L2) O(L) 表 2 对比实验数据
Table 2. Comparison of experimental data
algorithm overall accuracy/% highest accuracy/% inference time/ms recall/% CNN 51.74 81.89 251 51.66 LSTM 58.1 87.59 368 58.28 TCN 59.2 90.23 279 69.43 LSTM-LSH attention 59.6 90.6 506 60.08 CNN-LSTM 60.48 91.08 439 60.42 CNN-LSTM-LSH attention 61 91.54 597 61.15 TCN-LSTM 62.25 93.16 572 62.65 TCN-LSTM-LSH attention 64.71 96.46 603 64.81 -
[1] 阮天宸, 吴启晖, 赵世瑾, 等. 认知学习: 电磁频谱空间机器学习新范式[J]. 电子学报, 2023, 51(6): 1430-1442Ruan Tianchen, Wu Qihui, Zhao Shijin, et al. Cognitive learning: a new paradigm for machine learning in electromagnetic spectrum environment[J]. Acta Electronica Sinica, 2023, 51(6): 1430-1442 [2] 卢河旭, 陈丹伟, 罗圣美. 基于YOLOv5架构改进的电磁信号目标识别方法[J]. 计算机测量与控制, 2024, 32(11): 243-250,294Lu Hexu, Chen Danwei, Luo Shengmei. An improved recognition method for electromagnetic signal targets based on YOLOv5 architecture[J]. Computer Measurement & Control, 2024, 32(11): 243-250,294 [3] 陆欢, 周顺勇, 彭梓洋, 等. 无线电信号的调制识别研究进展[J]. 四川轻化工大学学报(自然科学版), 2024, 37(6): 31-42Lu Huan, Zhou Shunyong, Peng Ziyang, et al. Research progress on modulation identification of radio signals[J]. Journal of Sichuan University of Science & Engineering (Natural Science Edition), 2024, 37(6): 31-42 [4] Weaver C S, Cole C A, Krumland R B, et al. The automatic classification of modulation types by pattern recognition[R]. Palo Alto: Defense Technical Information Center, 1969. [5] Rajendran S, Meert W, Giustiniano D, et al. Deep learning models for wireless signal classification with distributed low-cost spectrum sensors[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(3): 433-445. doi: 10.1109/TCCN.2018.2835460 [6] Yang Cheng, He Zhimin, Peng Yang, et al. Deep learning aided method for automatic modulation recognition[J]. IEEE Access, 2019, 7: 109063-109068. doi: 10.1109/ACCESS.2019.2933448 [7] 秦博伟, 蒋磊, 许华, 等. 基于残差生成对抗网络的调制识别算法[J]. 系统工程与电子技术, 2022, 44(6): 2019-2026 doi: 10.12305/j.issn.1001-506X.2022.06.30Qin Bowei, Jiang Lei, Xu Hua, et al. Modulation recognition algorithm based on residual generation adversarial network[J]. Systems Engineering and Electronics, 2022, 44(6): 2019-2026 doi: 10.12305/j.issn.1001-506X.2022.06.30 [8] 张航, 吴泓霖, 余勤, 等. 基于多特征信息的深度学习网络调制识别算法[J]. 计算机工程与设计, 2022, 43(10): 2762-2768Zhang Hang, Wu Honglin, Yu Qin, et al. Modulation recognition algorithm for multiple feature information based on deep learning[J]. Computer Engineering and Design, 2022, 43(10): 2762-2768 [9] Ding Yixin. Automatic modulation recognition of communication signal based on wavelet transform combined with singular value and NCA-CNN[C]//Wireless and Optical Communications Conference (WOCC). 2023: 1-6. [10] Zhang Bojun. Multimodal machine learning algorithm for enhanced signal modulation recognition in wireless communication systems[C]//IEEE 49th Conference on Local Computer Networks (LCN). 2024: 1-6. [11] Lea C, Flynn M D, Vidal R, et al. Temporal convolutional networks for action segmentation and detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017: 1003-1012. [12] 郝建华. 基于深度学习的时间序列预测算法研究[D]. 济南: 山东师范大学, 2024: 89-91Hao Jianhua. Research on time series forecasting algorithms based on deep learning[D]. Ji’nan: Shandong Normal University, 2024: 89-91 [13] Qiao Junbo, Han Suai, Sun Zeyang. Modulated recognition and function realization based on deep learning[C]//IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). 2023: 1-6. [14] 刘佳旭, 白再冉, 张艳菊. 基于BiLSTM-Attention的议论文篇章要素识别[J]. 计算机系统应用, 2025, 34(5): 202-211Liu Jiaxu, Bai Zairan, Zhang Yanju. Discourse elements identification in argumentative essays based on BiLSTM-attention[J]. Computer Systems & Applications, 2025, 34(5): 202-211 [15] 胡国乐, 李鹏, 林事力, 等. 基于相位变换和CNN-BiLSTM的自动调制识别算法[J]. 电讯技术, 2024, 64(11): 1780-1787Hu Guole, Li Peng, Lin Shili, et al. An automatic modulation recognition algorithm based on phase transformation and CNN-BiLSTM[J]. Telecommunication Engineering, 2024, 64(11): 1780-1787 [16] 房虹辰. 基于LSTM和CNN的频谱感知方法研究[D]. 银川: 宁夏大学, 2022: 23-25Fang Hongchen. Research on spectrum sensing method based on LSTM and CNN[D]. Yinchuan: Ningxia University, 2022: 23-25 -