留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋翼无人机邻近雷击电磁场效应分析

赵青晨 付尚琛 石立华

赵青晨, 付尚琛, 石立华. 旋翼无人机邻近雷击电磁场效应分析[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250127
引用本文: 赵青晨, 付尚琛, 石立华. 旋翼无人机邻近雷击电磁场效应分析[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250127
Zhao Qingchen, Fu Shangchen, Shi Lihua. Analysis of the electromagnetic field effect of proximity lightning strikes by rotary-wing UAV[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250127
Citation: Zhao Qingchen, Fu Shangchen, Shi Lihua. Analysis of the electromagnetic field effect of proximity lightning strikes by rotary-wing UAV[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250127

旋翼无人机邻近雷击电磁场效应分析

doi: 10.11884/HPLPB202537.250127
基金项目: 国家自然科学基金项目(52005509);江苏省自然科学基金项目(BK20200586);电磁环境效应与光电工程国家级重点实验室基金项目(6142206200102, 61422062303)
详细信息
    作者简介:

    赵青晨,207300685@qq.com

    通讯作者:

    付尚琛,fshangchen@sina.com

  • 中图分类号: O441.5

Analysis of the electromagnetic field effect of proximity lightning strikes by rotary-wing UAV

  • 摘要: 随着旋翼无人机在空中雷暴电场探测等领域的应用变得越来越广泛,其在邻近雷击环境下的适应性问题也变得越来越突出。利用邻近雷击脉冲电场和脉冲磁场模拟装置,对无人机内部线缆的耦合效应进行了测试,获取了不同模块的连接线在邻近雷击脉冲电场和磁场作用下的耦合电流波形。结果表明,在邻近雷击脉冲电场作用下,无人机内部各模块之间的连接线都会耦合出较大电流,其中电机与电子调速器之间的电流峰值最高,达到了12 A;脉冲磁场对各连接线缆的耦合效应主要集中在脉冲电压信号上升沿段,电流波形变化更快。研究结果可为无人机的邻近雷击防护设计提供借鉴。
  • 图  1  邻近雷击脉冲电场模拟装置

    Figure  1.  Adjacent lightning pulse electric field simulator

    图  2  全波电压波形

    Figure  2.  Full-wave voltage waveform

    图  3  无人机内部线缆布置图

    Figure  3.  Diagram of the internal cable layout of the drone

    图  4  无人机线缆感应电流测量设置

    Figure  4.  Measurement settings of induced current of UAV cables

    图  5  无人机线缆全波耦合电流对比

    Figure  5.  Comparison of full-wave coupling currents of UAV cables

    图  6  无人机线缆截断波耦合结果耦合电流对比

    Figure  6.  Comparison of coupling currents of UAV cable truncation wave coupling results

    图  7  无人机线缆全波感应电流信号分析结果

    Figure  7.  Analysis results of full-wave induced current signal of UAV cable

    图  8  无人机线缆截断波感应电流信号分析结果

    Figure  8.  Analysis results of the interception wave induced current signal of the UAV cable

    图  9  实验原理图

    Figure  9.  Experimental schematic

    图  10  测试装置图

    Figure  10.  Diagram of the test setup

    图  11  邻近雷击脉冲磁场测试波形

    Figure  11.  Adjacent lightning pulse magnetic field test waveform

    图  12  不同磁场强度等级下蜂鸣器顺时针270°旋翼的耦合电流波形测量结果

    Figure  12.  Measurement results of the coupled current waveform of the buzzer clockwise 270° rotor at different magnetic field strength levels

    图  13  场强1600 A/m时不同测量位置的耦合电流波形测量结果

    Figure  13.  Measurement results of coupled current waveforms at different measurement positions with a field strength of 1600 A/m

    表  1  线型参数

    Table  1.   Linear parameters

    linear inner core
    material
    outer core
    material
    cable
    diameter/mm
    single Cu PVC 1.5
    cable Cu PE 2.5
    twisted pair Cu PE 2.0
    three twisted
    threads
    Cu PE 2.0
    下载: 导出CSV

    表  2  不同位置耦合电流峰值测量结果

    Table  2.   Measurement results of coupling current peaks at different locations

    location coupled current peak/A
    80 (A∙m−1) 400 (A∙m−1) 800 (A∙m−1) 1200(A∙m−1) 1600(A∙m−1)
    the rotor where the buzzer is located 0.007 0.04 0.074 0.11 0.144
    buzzer position rotor 90° clockwise 0.008 0.054 0.097 0.139 0.161
    buzzer position rotor 180° clockwise 0.006 0.034 0.064 0.09 0.126
    buzzer position rotor 270° clockwise 0.009 0.049 0.092 0.135 0.163
    power Loop 0.008 0.04 0.092 0.146 0.182
    GPS cable 0.007 0.041 0.08 0.114 0.151
    下载: 导出CSV
  • [1] 虞昊. 现代防雷技术基础[M]. 北京: 清华大学出版社, 2005

    Yu Hao. Fundamentals of modern lightning protection technology[M]. Beijing: Tsinghua University Press, 2005
    [2] 杨仲江, 朱浩, 唐宏科, 等. 地面电场仪测量数据的误差来源及分析处理[J]. 大气科学学报, 2010, 33(6): 751-756 doi: 10.3969/j.issn.1674-7097.2010.06.015

    Yang Zhongjiang, Zhu Hao, Tang Hongke, et al. Research on source of error and analytical processing of atmospheric electric field data[J]. Transactions of Atmospheric Sciences, 2010, 33(6): 751-756 doi: 10.3969/j.issn.1674-7097.2010.06.015
    [3] French J R, Helsdon J H, Detwiler A G, et al. Microphysical and electrical evolution of a Florida thunderstorm: 1. observations[J]. Journal of Geophysical Research: Atmospheres, 1996, 101(D14): 18961-18977. doi: 10.1029/96JD01625
    [4] 朱男男, 易笑园, 宫全胜, 等. 大气静电场仪组网在天津雷电预警中的初步应用[C]//第七届中国国际防雷论坛论文摘编. 2008

    Zhu Nannan, Yi Xiaoyuan, Gong Quansheng, et al. Preliminary application of atmospheric electrostatic field instrument networking in lightning early warning in Tianjin[C]//Excerpts from papers of China International Lightning Protection Forum. 2008
    [5] 卢新科. 电磁脉冲的耦合及防护[D]. 西安: 西安电子科技大学, 2009

    Lu Xinke. EMP coupling and EMP protection[D]. Xi'an: Xidian University, 2009
    [6] Rakov V A, Uman M A. Lightning: physics and effects[M]. Cambridge: Cambridge University Press, 2003.
    [7] 王道洪, 郄秀书, 郭昌明. 雷电与人工引雷[M]. 上海: 上海交通大学出版社, 2000

    Wang Daohong, Xuan Xiushu, Guo Changming. Lightning and artificial lightning guidance[M]. Shanghai: Shanghai Jiao Tong University Press, 2000
    [8] Zhang Zhao, Zhou Yang, Zhang Yang, et al. Strong electromagnetic interference and protection in UAVs[J]. Electronics, 2024, 13: 393. doi: 10.3390/electronics13020393
    [9] Jiang Wenkai, He Junlin, Zheng Qiwei, et al. Virtual simulation system of broadband electromagnetic pulse damaging UAV[C]//2024 4th International Conference on Energy, Power and Electrical Engineering (EPEE). 2024: 729-735.
    [10] Gizatullin Z M, Nuriev M G, Shleimovich M P. Physical modeling of electromagnetic interference in unmanned aerial vehicle under action of indirect lightning strike[C]//2017 Dynamics of Systems, Mechanisms and Machines (Dynamics). 2017: 1-4.
    [11] 陈亚洲, 张冬晓, 田庆民, 等. 某型无人机数据链系统HEMP辐照效应[J]. 高电压技术, 2016, 42(3): 959-965

    Chen Yazhou, Zhang Dongxiao, Tian Qingmin, et al. HEMP radiation effects on unmanned Aerial Vdehicle data link system[J]. High Voltage Engineering, 2016, 42(3): 959-965
    [12] 张冬晓, 陈亚洲, 田庆民, 等. 某型无人机系统雷电脉冲磁场效应[J]. 强激光与粒子束, 2015, 27: 103236 doi: 10.11884/HPLPB201527.103236

    Zhang Dongxiao, Chen Yazhou, Tian Qingmin, et al. Lightning pulse magnetic field effects on UAV system[J]. High Power Laser and Particle Beams, 2015, 27: 103236 doi: 10.11884/HPLPB201527.103236
    [13] 张万里, 史云雷, 何勇, 等. 雷电电磁脉冲对典型机载GPS模块的损伤效应研究[J]. 强激光与粒子束, 2021, 33: 033001

    Zhang Wanli, Shi Yunlei, He Yong, et al. Study on damage effects of lightning electromagnetic pulse on typical airborne GPS module[J]. High Power Laser and Particle Beams, 2021, 33: 033001
    [14] Kossowski T, Szczupak P. Laboratory tests of the resistance of an unmanned aerial vehicle to the normalized near lightning electrical component[J]. Energies, 2023, 16: 4900. doi: 10.3390/en16134900
    [15] 周佳乐, 余道杰, 柴梦娟, 等. 无人机系统级线缆电磁效应与耦合特征分析[J]. 强激光与粒子束, 2025, 37: 023001 doi: 10.11884/HPLPB202537.240399

    Zhou Jiale, Yu Daojie, Chai Mengjuan, et al. Analysis of electromagnetic effects and coupling characteristics of UAV system-level cables[J]. High Power Laser and Particle Beams, 2025, 37: 023001 doi: 10.11884/HPLPB202537.240399
    [16] 杜宝舟, 张冬晓, 程二威. 超宽带电磁脉冲对无人机辐照耦合仿真研究[J]. 计算机仿真, 2018, 35(4): 29-32,37 doi: 10.3969/j.issn.1006-9348.2018.04.006

    Du Baozhou, Zhang Dongxiao, Cheng Erwei. Simulation study on irradiation coupling of UWB electromagnetic pulse to UAV[J]. Computer Simulation, 2018, 35(4): 29-32,37 doi: 10.3969/j.issn.1006-9348.2018.04.006
    [17] Gaynutdinov R R, Chermoshentsev S F. Study of lightning strike impact on unmanned aerial vehicle[C]//2016 17th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM). 2016: 428-432.
    [18] Kim S, Noh Y H, Lee J, et al. Electromagnetic signature of a quadcopter drone and its relationship with coupling mechanisms[J]. IEEE Access, 2019, 7: 174764-174773. doi: 10.1109/ACCESS.2019.2956499
    [19] Gao Shukun, Cheng Erwei, Chen Yazhou, et al. Research on ultra-wideband electromagnetic pulse irradiation effect and protection method of Unmanned Aerial Vehicle[C]//Journal of Physics: Conference Series. 2019: 012165.
    [20] Qiao Zhijiun, Pan Xuchao, He Yong, et al. A study examining the adverse effects of electromagnetic pulse on system-level unmanned aerial vehicles and their subsequent damage assessment and mitigation strategies[J]. Iranian Journal of Chemistry and Chemical Engineering, 2024, 43(11): 4185-4199.
    [21] Ma Zhengyang, He Shaonan, Duan Zhaobin, et al. Analyzing the indirect effects of lightning on unmanned aerial vehicle navigation receivers[J]. Aerospace, 2024, 11: 810. doi: 10.3390/aerospace11100810
    [22] 罗成. 基于旋翼无人机平台的雷暴环境大气电场探测研究[D]. 南京: 陆军工程大学, 2025

    Luo Cheng. Research on atmospheric electric field detection in thunderstorm environment based on rotary-wing UAV platform[D]. Nanjing: Army Engineering University, 2025
    [23] Gao Chang, Xue Zhenghui, Li Weiming, et al. The influence of electromagnetic interference of HPM on UAV[C]//2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT). 2021: 1-3.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-08
  • 修回日期:  2025-09-02
  • 录用日期:  2025-09-01
  • 网络出版日期:  2025-09-15

目录

    /

    返回文章
    返回