Research on the photoelectric conversion efficiency of vertical 4H-SiC photoconductive semiconductor switches
-
摘要: 随着固态化、模块化、小型化脉冲功率系统的需求不断加深,宽禁带半导体光电导开关(PCSS)由于高功率和快响应等特点引起了广泛的关注。基于高纯半绝缘(HPSI)碳化硅(SiC)衬底,研制了体结构SiC PCSS。在此基础上,提出了一种基于氟化镁和二氧化钛的高反射镜SiC光电导开关封装结构,有效地提高了光电导开关的光能利用率,搭建了基于新封装结构高纯SiC光电导开关的亚纳秒短脉冲产生电路,优化了脉冲形成线与光电导开关的连接方式,设计了开槽型脉冲形成线结构,减小了电路的寄生电感,缩短了电路的响应时间。采用新封装结构和脉冲形成线,在偏置电压为10 kV、激光波长为532 nm、激光脉冲半高宽为500 ps、激光脉冲能量为90 μJ和负载为50 Ω的工作条件下,实验获得了电压幅值为7.6 kV的亚纳秒短脉冲,脉冲波形的上升沿和半高宽分别为620 ps和2.2 ns,对应的输出峰值功率为1.1 MW,系统的光电功率增益达到7.7 dB。Abstract:
Background With the increasing demand for solid-state, modular, and miniaturized pulsed power systems, wide-band-gap photoconductive semiconductor switches (PCSSs) have attracted significant attention due to their high-power capacity and fast response characteristics.Purpose This study aims to develop a vertical PCSS on high-purity semi-insulating (HPSI) 4H-SiC substrate with an improved package structure to enhance laser energy utilization, while optimizing the pulse-forming circuit to minimize parasitic effects.Methods We fabricated vertical PCSSs on HPSI 4H-SiC substrates and proposed a novel package structure with a high reflector based on MgF2/TiO2 to improve laser energy utilization. And a slotted pulse-forming line structure is introduced to reduce parasitic inductance.Results Under 10 kV bias voltage with 532 nm laser excitation (500 ps pulse width, 90 μJ energy), the system generated 7.6 kV pulses across 50 Ω load with 620 ps rise time and 2.2 ns pulse width. The peak output power reached 1.1 MW with 7.7 dB photoelectric power gain.Conclusions The developed SiC PCSS with high-reflector package demonstrates enhanced laser energy utilization. The slotted pulse-forming line effectively reduces parasitic inductance, enabling high-power, fast-response performance suitable for compact pulsed power systems. -
表 1 SiC光电导开关导通电阻对比
Table 1. Comparison of resistor of SiC PCSS
-
[1] Wang Langning, Jia Yongsheng, Liu Jinliang. Photoconductive semiconductor switch-based triggering with 1 ns jitter for trigatron[J]. Matter and Radiation at Extremes, 2018, 3(5): 256-260. doi: 10.1016/j.mre.2017.12.006 [2] Sullivan J S, Stanley J R. Wide bandgap extrinsic photoconductive switches[J]. IEEE Transactions on Plasma Science, 2008, 36(5): 2528-2532. doi: 10.1109/TPS.2008.2002147 [3] Kidera S, Sakamoto T, Sato T. Accurate UWB radar three-dimensional imaging algorithm for a complex boundary without range point connections[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4): 1993-2004. doi: 10.1109/TGRS.2009.2036909 [4] Aggrawal H, Chen Peiyu, Assefzadeh M M, et al. Gone in a picosecond: techniques for the generation and detection of picosecond pulses and their applications[J]. IEEE Microwave Magazine, 2016, 17(12): 24-38. doi: 10.1109/MMM.2016.2608764 [5] Danworaphong S, Tomoda M, Matsumoto Y, et al. Three-dimensional imaging of biological cells with picosecond ultrasonics[J]. Applied Physics Letters, 2015, 106: 163701. doi: 10.1063/1.4918275 [6] 袁建强, 谢卫平, 周良骥, 等. 光导开关研究进展及其在脉冲功率技术中的应用[J]. 强激光与粒子束, 2008, 20(1): 171-176Yuan Jianqiang, Xie Weiping, Zhou Liangji, et al. Developments and applications of photoconductive semiconductor switches in pulsed power technology[J]. High Power Laser and Particle Beams, 2008, 20(1): 171-176 [7] 刘锡三. 强流带电粒子束及其应用[M]. 北京: 国防工业出版社, 2007Liu Xisan. Intense particle beams and its applications[M]. Beijing: National Defense Industry Press, 2007 [8] Sullivan J S. Wide bandgap extrinsic photoconductive switches[D]. Livermore: Lawrence Livermore National Lab. , 2013. [9] Zutavern F J, Loubriel G M, Helgeson W D, et al. High-gain GaAs photoconductive semiconductor switches (PCSS): device lifetime, high-current testing, optical pulse generators[C]//Proceedings of SPIE 2343, Optically Activated Switching IV. 1995: 180-186. [10] Xu Ming, Dong Hangtian, Liu Chun, et al. Investigation of an opposed-contact GaAs photoconductive semiconductor switch at 1-kHz excitation[J]. IEEE Transactions on Electron Devices, 2021, 68(5): 2355-2359. doi: 10.1109/TED.2021.3066094 [11] Welsch M, Singh A, Winnerl S, et al. High-bias-field operation of GaAs photoconductive terahertz emitters[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2021, 42(5): 537-546. doi: 10.1007/s10762-021-00776-9 [12] Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 3rd ed. Boca Raton: CRC Press, 2015. [13] Lee C H. Microwave photonics[M]. 2nd ed. Boca Raton: CRC Press, 2013. [14] 肖龙飞, 徐现刚. 宽禁带碳化硅单晶衬底及器件研究进展[J]. 强激光与粒子束, 2019, 31: 040003 doi: 10.11884/HPLPB201931.190043Xiao Longfei, Xu Xiangang. Recent development of wide bandgap semiconductor SiC substrates and device[J]. High Power Laser and Particle Beams, 2019, 31: 040003 doi: 10.11884/HPLPB201931.190043 [15] Jia Huang; Long Hu; Zhenzhen Ma, et al. Study on Photoelectric Efficiency and Failure Mechanism of High Purity 4H-SiC PCSS[J]. IEEE Transactions on Electron Devices., 2023, 70(11): 5762-5768. doi: 10.1109/TED.2023.3318550 [16] Wu Qilin, Xun Tao, Zhao Yuxin, et al. The test of a high-power, semi-insulating, linear-mode, vertical 6H-SiC PCSS[J]. IEEE Transactions on Electron Devices, 2019, 66(4): 1837-1842. doi: 10.1109/TED.2019.2901065 [17] He Xuan, Zhang Bin, Liu Shuailin, et al. High-power linear-polarization burst-mode all-fibre laser and generation of frequency-adjustable microwave signal[J]. High Power Laser Science and Engineering, 2021, 9: e13. doi: 10.1017/hpl.2021.11 [18] Cao Penghui, Huang Wei, Guo Hui, et al. Performance of a vertical 4H-SiC photoconductive switch with AZO transparent conductive window and silver mirror reflector[J]. IEEE Transactions on Electron Devices, 2018, 65(5): 2047-2051. doi: 10.1109/TED.2018.2815634 [19] Sullivan J S, Stanley J R. 6H-SiC photoconductive switches triggered at below bandgap wavelengths[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(4): 980-985. doi: 10.1109/TDEI.2007.4286537 [20] Choi P H, Kim Y P, Park S, et al. High-temperature annealing of high purity semi-insulating 4H-SiC and its effect on the performance of a photoconductive semiconductor switch[J]. IEEE Electron Device Letters, 2023, 44(7): 1168-1171. doi: 10.1109/LED.2023.3277846 -