留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Langdon效应下离子碰撞对背向散射竞争的影响

张殊卿 李晓冉 邱捷 郝亮

张殊卿, 李晓冉, 邱捷, 等. Langdon效应下离子碰撞对背向散射竞争的影响[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250148
引用本文: 张殊卿, 李晓冉, 邱捷, 等. Langdon效应下离子碰撞对背向散射竞争的影响[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250148
Zhang Shuqing, Li Xiaoran, Qiu Jie, et al. Impact of ion collisions on backscattering competition under the Langdon effect[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250148
Citation: Zhang Shuqing, Li Xiaoran, Qiu Jie, et al. Impact of ion collisions on backscattering competition under the Langdon effect[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250148

Langdon效应下离子碰撞对背向散射竞争的影响

doi: 10.11884/HPLPB202537.250148
基金项目: 国家自然科学基金项目(12275032、12205021); 中国博士后科学基金项目(2024M764280)
详细信息
    作者简介:

    张殊卿,304686789@qq.com

    通讯作者:

    郝亮,hao_liang@iapcm.ac.cn

  • 中图分类号: O53

Impact of ion collisions on backscattering competition under the Langdon effect

  • 摘要: 背向受激拉曼散射与背向受激布里渊散射是激光聚变中广泛存在的两种激光等离子体不稳定性。为了深入理解两者之间的竞争过程,通过求解包含超高斯电子分布函数的五波耦合方程,并考虑了离子-离子碰撞对离子极化率的修正,分析了CH等离子体中Langdon效应和离子碰撞对两种不稳定性竞争关系和反射率的影响,研究结果表明,Langdon效应既可以改变背向受激拉曼散射与背向受激布里渊散射的色散关系,也可以改变电子等离子体波和离子声波的阻尼,而离子-离子碰撞的修正则主要是改变背向受激布里渊散射的色散关系和离子声波的阻尼,两者都可以使背向受激拉曼散射在密度相对更低的条件下在与背向受激布里渊散射的竞争中占据优势。
  • 图  1  不同超高斯指数下,受激布里渊散射(SBS)的空间增长率随散射波长偏移的变化关系

    Figure  1.  The spatial growth rate of SBS versus the scattered wavelength shift at different super-Gaussian exponents

    图  2  -DI随散射波长偏移的变化关系

    Figure  2.  −DI versus the scattered wavelength shift

    图  3  $\chi _{\text{i}}^I$$|1 + {\chi _{\text{i}}}{|^2}$随相速度${v_{ph}}$的下降速率

    Figure  3.  The dropping rates of $\chi _{\text{i}}^I$ and $|1 + {\chi _{\text{i}}}{|^2}$ versus ${v_{ph}}$

    图  4  SRS与SBS背向散射率随电子数密度的变化

    Figure  4.  Variation of backward scattering rates of SRS and SBS with electron density

    表  1  参数设置

    Table  1.   The representative cases for CH (Ion ratio is 1:1) plasmas

    Case ne/nc Te/(keV) Ti/(keV) Collision
    a 0.1 3000 200 no
    b 0.1 3000 1200 no
    c 0.1 3000 200 yes
    d 0.1 3000 1200 yes
    下载: 导出CSV
  • [1] McCrory R L, Meyerhofer D D, Betti R, et al. Progress in direct-drive inertial confinement fusion[J]. Physics of Plasmas, 2008, 15: 055503. doi: 10.1063/1.2837048
    [2] Craxton R S, Anderson K S, Boehly T R, et al. Direct-drive inertial confinement fusion: a review[J]. Physics of Plasmas, 2015, 22: 110501. doi: 10.1063/1.4934714
    [3] Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
    [4] Landen O L, Benedetti R, Bleuel D, et al. Progress in the indirect-drive national ignition campaign[J]. Plasma Physics and Controlled Fusion, 2012, 54: 124026. doi: 10.1088/0741-3335/54/12/124026
    [5] He X T, Li J W, Fan Z F, et al. A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion[J]. Physics of Plasmas, 2016, 23: 082706. doi: 10.1063/1.4960973
    [6] Tabak M, Clark D S, Hatchett S P, et al. Review of progress in fast ignition[J]. Physics of Plasmas, 2005, 12: 057305. doi: 10.1063/1.1871246
    [7] Zhang F, Cai H B, Zhou W M, et al. Enhanced energy coupling for indirect-drive fast-ignition fusion targets[J]. Nature Physics, 2020, 16(7): 810-814. doi: 10.1038/s41567-020-0878-9
    [8] Zhang J, Wang W M, Yang X H, et al. Double-cone ignition scheme for inertial confinement fusion[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 378: 20200015. doi: 10.1098/rsta.2020.0015
    [9] Kritcher A L, Zylstra A B, Weber C R, et al. Design of the first fusion experiment to achieve target energy gain G> 1[J]. Physical Review E, 2024, 109: 025204. doi: 10.1103/PhysRevE.109.025204
    [10] White R, Kaw P, Pesme D, et al. Absolute parametric instabilities in inhomogeneous plasmas[J]. Nuclear Fusion, 1974, 14(1): 45-51. doi: 10.1088/0029-5515/14/1/007
    [11] Forslund D W, Kindel J M, Lindman E L. Theory of stimulated scattering processes in laser-irradiated plasmas[J]. Physics of Fluids, 1975, 18(8): 1002-1016. doi: 10.1063/1.861248
    [12] Langdon A B. Nonlinear inverse bremsstrahlung and heated-electron distributions[J]. Physical Revoew Letters, 1980, 44(9): 575-579. doi: 10.1103/PhysRevLett.44.575
    [13] Hinkel D E, Rosen M D, Williams E A, et al. Stimulated Raman scatter analyses of experiments conducted at the National Ignition Facility[J]. Physics of Plasmas, 2011, 18: 056312. doi: 10.1063/1.3577836
    [14] Turnbull D, Colaïtis A, Hansen A M, et al. Impact of the Langdon effect on crossed-beam energy transfer[J]. Nature Physics, 2020, 16(2): 181-185. doi: 10.1038/s41567-019-0725-z
    [15] Hao Liang, Qiu Jie, Huo Wenyi. Generation of high intensity speckles in overlapping laser beams[J]. Matter and Radiation at Extremes, 2023, 8: 025903. doi: 10.1063/5.0123585
    [16] Li Xiaoran, Qiu Jie, Zhang Shuqing, et al. Investigation of the Langdon effect on the nonlinear evolution of SBS in Au plasmas[J]. Plasma Physics and Controlled Fusion, 2025, 67: 035018. doi: 10.1088/1361-6587/adb17a
    [17] Chen C, Gong T, Li Z, et al. Implementation of a large-aperture Thomson scattering system for diagnosing driven ion acoustic waves on Shenguang-III prototype laser facility[J]. Journal of Instrumentation, 2022, 17: P05017. doi: 10.1088/1748-0221/17/05/P05017
    [18] Chen Chaoxin, Gong Tao, Li Zhichao, et al. Study of the spatial growth of stimulated Brillouin scattering in a gas-filled Hohlraum via detecting the driven ion acoustic wave[J]. Matter and Radiation at Extremes, 2024, 9: 027601. doi: 10.1063/5.0173023
    [19] Qiu Jie, Hao Liang, Cao Lihua, et al. Investigation of Langdon effect on the stimulated backward Raman and Brillouin scattering[J]. Plasma Physics and Controlled Fusion, 2021, 63: 125021. doi: 10.1088/1361-6587/ac2e5b
    [20] Alaterre P, Matte J P, Lamoureux M. Ionization and recombination rates in non-Maxwellian plasmas[J]. Physical Review A, 1986, 34(2): 1578-1581. doi: 10.1103/PhysRevA.34.1578
    [21] Liu Z, Weng S M, Ma H H, et al. Revisit of electron temperature effect on stimulated Brillouin scattering in homogenous plasma[J]. Physics of Plasmas, 2024, 31: 062101. doi: 10.1063/5.0199533
    [22] Hao L, Liu Z J, Hu X Y, et al. Competition between the stimulated Raman and Brillouin scattering under the strong damping condition[J]. Laser and Particle Beams, 2013, 31(2): 203-209. doi: 10.1017/S0263034613000074
    [23] Tang C L. Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process[J]. Journal of Applied Physics, 1966, 37(8): 2945-2955. doi: 10.1063/1.1703144
    [24] Hao Liang, Zhao Yiqing, Yang Dong, et al. Analysis of stimulated Raman backscatter and stimulated Brillouin backscatter in experiments performed on SG-III prototype facility with a spectral analysis code[J]. Physics of Plasmas, 2014, 21: 072705. doi: 10.1063/1.4890019
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  29
  • HTML全文浏览量:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-20
  • 修回日期:  2025-06-04
  • 录用日期:  2025-06-12
  • 网络出版日期:  2025-10-23

目录

    /

    返回文章
    返回