留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SDR的LFM信号对QPSK通信系统干扰效应实验研究

黄嘉伟 张明文 刘昆仑 马春光

黄嘉伟, 张明文, 刘昆仑, 等. 基于SDR的LFM信号对QPSK通信系统干扰效应实验研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250149
引用本文: 黄嘉伟, 张明文, 刘昆仑, 等. 基于SDR的LFM信号对QPSK通信系统干扰效应实验研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250149
Huang Jiawei, Zhang Mingwen, Liu Kunlun, et al. Investigation on interference effects of LFM signals on QPSK communication systems based on SDR[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250149
Citation: Huang Jiawei, Zhang Mingwen, Liu Kunlun, et al. Investigation on interference effects of LFM signals on QPSK communication systems based on SDR[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250149

基于SDR的LFM信号对QPSK通信系统干扰效应实验研究

doi: 10.11884/HPLPB202537.250149
基金项目: 四川省科技计划项目(2024ZYD0153)
详细信息
    作者简介:

    黄嘉伟,jiawei2000303@163.com

    通讯作者:

    马春光,macg@uestc.edu.cn

  • 中图分类号: TN972

Investigation on interference effects of LFM signals on QPSK communication systems based on SDR

  • 摘要: 高功率雷达广泛应用于国防、监视和航空航天等重要领域,但其较高的峰值功率和宽频谱特性可能对邻近频段的通信系统造成非预期的干扰。其中,线性调频(LFM)信号是高功率雷达最常用的信号形式,因此开展LFM信号对通信系统的干扰特性研究具有重要意义。为明确LFM信号关键波形参数对正交相移键控(QPSK)调制通信系统的干扰效应并揭示其干扰规律,基于软件定义无线电(SDR)搭建QPSK调制通信系统,以误差矢量幅度(EVM)为统一度量指标,定量分析了脉宽、脉冲周期和调频带宽三个关键波形参数对QPSK调制通信系统的干扰影响。结果表明:线性调频脉冲的占空比增大会显著提高EVM值,但当占空比超过30%后,EVM增速趋于稳定;在相同占空比条件下,脉冲周期变化对通信系统EVM的影响不显著;调频带宽从1 MHz增至3 MHz时,通信系统的EVM由−10.5 dB降至−19.8 dB,降幅达9.3 dB;进一步将带宽由3 MHz增加至10 MHz,EVM基本保持恒定。本文基于SDR平台搭建了高功率微波(HPM)雷达信号对通信系统干扰的定量分析实验系统,开展了多波形参数条件下的干扰测试与分析,揭示了LFM信号对QPSK调制通信系统的潜在影响,为雷达与通信频谱共存及通信系统抗干扰设计提供了实验依据与理论支撑。
  • 图  1  通信系统电磁干扰场景示意图

    Figure  1.  Illustration of interference scenario in communication system

    图  2  频谱重叠示意图

    Figure  2.  Schematic diagram of spectral overlap

    图  3  误差矢量幅度示意图

    Figure  3.  Illustration of Error Vector Magnitude (EVM)

    图  4  实验框图及实验现场照片

    Figure  4.  Block diagram and photograph of the experimental setup

    图  5  基于Matlab Simulink软件的信号发射和接收模块设计

    Figure  5.  Design of signal transmission and reception modules based on MATLAB/Simulink

    图  6  EVM随占空比变化测试结果

    Figure  6.  Test results of EVM variation with duty cycle

    图  7  相同占空比下不同脉冲周期(100 µs与1000 µs)干扰下通信信号接收频谱图

    Figure  7.  Received spectra of communication signals under interference with same duty cycle and different periods (100 µs and 1000 µs)

    图  8  占空比30%条件下EVM测试星座图

    Figure  8.  Constellation diagrams of EVM measurement under 30% duty cycle

    图  9  EVM随调频带宽变化测试结果

    Figure  9.  Test results of EVM variation with modulation bandwidth

  • [1] 王建明. 面向下一代战争的雷达系统与技术[J]. 现代雷达, 2017, 39(12): 1-11

    Wang Jianming. Radar systems and radar technologies for next generation of warfare[J]. Modern Radar, 2017, 39(12): 1-11
    [2] 王朗, 雷方燕, 胡进光. HPM短脉冲雷达发射信号的重构与仿真[J]. 强激光与粒子束, 2019, 31: 063002 doi: 10.11884/HPLPB201931.190024

    Wang Lang, Lei Fangyan, Hu Jinguang. Reconstruction and simulation of HPM short pulse radar transmitting signal[J]. High Power Laser and Particle Beams, 2019, 31: 063002 doi: 10.11884/HPLPB201931.190024
    [3] 翟畅, 方进勇, 吴江牛, 等. 基于新型高功率微波的雷达探测技术研究[J]. 微波学报, 2024, 40(1): 39-43

    Zhai Chang, Fang Jinyong, Wu Jiangniu, et al. Research on radar detection technology based on new high-power microwave[J]. Journal of Microwaves, 2024, 40(1): 39-43
    [4] Radasky W A, Hoad R. Recent developments in high power EM (HPEM) standards with emphasis on high altitude electromagnetic pulse (HEMP) and intentional electromagnetic interference (IEMI)[J]. IEEE Letters on Electromagnetic Compatibility Practice and Applications, 2020, 2(3): 62-66. doi: 10.1109/LEMCPA.2020.3009236
    [5] 赵敏, 陈亚洲, 周星, 等. 无人机机载天线高功率微波耦合响应研究[J]. 强激光与粒子束, 2024, 36: 033006 doi: 10.11884/HPLPB202436.230215

    Zhao Min, Chen Yazhou, Zhou Xing, et al. Coupling response of unmanned aerial vehicle antennas under high-power microwave radiation[J]. High Power Laser and Particle Beams, 2024, 36: 033006 doi: 10.11884/HPLPB202436.230215
    [6] Mansson D, Thottappillil R, Backstrom M, et al. Vulnerability of European rail traffic management system to radiated intentional EMI[J]. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(1): 101-109. doi: 10.1109/TEMC.2007.915281
    [7] Radasky W A, Baum C E, Wik M W. Introduction to the special issue on high-power electromagnetics (HPEM) and intentional electromagnetic interference (IEMI)[J]. IEEE Transactions on Electromagnetic Compatibility, 2004, 46(3): 314-321. doi: 10.1109/TEMC.2004.831899
    [8] 汪海洋. 高功率微波效应机理理论与实验研究[D]. 成都: 电子科技大学, 2010: 12-15.
    [9] Wang H, Johnson J T, Baker C J. Spectrum sharing between communications and ATC radar systems[J]. IET Radar Sonar Navig, 2017, 11(6): 994-1001. doi: 10.1049/iet-rsn.2016.0312
    [10] Ali A, Chimeno M F, Azpúrua M A. Resilience of QPSK radio links under narrowband and broadband electromagnetic interferences[J]. IEEE Open Journal of the Communications Society, 2024, 5: 2391-2400. doi: 10.1109/OJCOMS.2024.3387339
    [11] Mansson D, Thottappillil R, Nilsson T, et al. Susceptibility of civilian GPS receivers to electromagnetic radiation[J]. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(2): 434-437. doi: 10.1109/TEMC.2008.921015
    [12] Dubois T, Laurin J J, Raoult J, et al. Effect of low and high power continuous wave electromagnetic interference on a microwave oscillator system: from VCO to PLL to QPSK receiver[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(2): 286-293. doi: 10.1109/TEMC.2013.2280670
    [13] Bayram Y, Volakis J L, Myoung S K, et al. High-power EMI on RF amplifier and digital modulation schemes[J]. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(4): 849-860. doi: 10.1109/TEMC.2008.2004600
    [14] 韩曹政, 王武斌, 赵伟, 等. 北斗/GPS导航系统抗高功率微波防护设计[J]. 强激光与粒子束, 2024, 36: 123001 doi: 10.11884/HPLPB202436.240219

    Han Caozheng, Wang Wubin, Zhao Wei, et al. Protection design of BDS/GPS to resist high power microwave[J]. High Power Laser and Particle Beams, 2024, 36: 123001 doi: 10.11884/HPLPB202436.240219
    [15] 胡明, 陈圣贤, 李永龙, 等. 重频超宽带电磁脉冲对GPS导航接收机的效应研究[J]. 强激光与粒子束, 2024, 36: 033011 doi: 10.11884/HPLPB202436.230324

    Hu Ming, Chen Shengxian, Li Yonglong, et al. Influence of repeated frequency UWB electromagnetic pulse on GPS navigation receiver[J]. High Power Laser and Particle Beams, 2024, 36: 033011 doi: 10.11884/HPLPB202436.230324
    [16] 魏光辉, 赵凯, 任仕召. 通信电台电磁辐射2阶互调低频阻塞效应与作用机理[J]. 电子与信息学报, 2020, 42(8): 2059-2064 doi: 10.11999/JEIT190574

    Wei Guanghui, Zhao Kai, Ren Shizhao. Second-order intermodulation low frequency blocking effect and mechanism for communication radio under electromagnetic radiation[J]. Journal of Electronics & Information Technology, 2020, 42(8): 2059-2064 doi: 10.11999/JEIT190574
    [17] 李伟, 魏光辉, 潘晓东, 等. 典型通信装备带内双频连续波电磁辐射效应预测方法[J]. 系统工程与电子技术, 2016, 38(11): 2474-2480 doi: 10.3969/j.issn.1001-506X.2016.11.04

    Li Wei, Wei Guanghui, Pan Xiaodong, et al. Electromagnetic radiation effects forecasting method about in-band dual-frequency continuous wave for typical communication equipment[J]. Systems Engineering and Electronics, 2016, 38(11): 2474-2480 doi: 10.3969/j.issn.1001-506X.2016.11.04
    [18] 魏光辉, 耿利飞, 潘晓东. 通信电台电磁辐射效应机理[J]. 高电压技术, 2014, 40(9): 2685-2692

    Wei Guanghui, Geng Lifei, Pan Xiaodong. Mechanism of electromagnetic radiation effects for communication equipment[J]. High Voltage Engineering, 2014, 40(9): 2685-2692
    [19] Cheng Shiyu, Pahlavan K, Wei Haowen, et al. A study of interference analysis between mmWave radars and IEEE 802.11AD at 60 GHz bands[J]. International Journal of Wireless Information Networks, 2022, 29(3): 222-231. doi: 10.1007/s10776-022-00564-9
    [20] Li Hui, Zhao Yongbo, Cheng Zengfei, et al. Correlated LFM waveform set design for MIMO radar transmit beampattern[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(3): 329-333. doi: 10.1109/LGRS.2016.2639826
    [21] Zhou Feng, Ji Rui, Sun Jinglu, et al. Analysis on the definition consistency problem of EVM measurement and its solution[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(2): 528-532. doi: 10.1109/TIM.2019.2901561
    [22] Pajares J, López-Paredes A. An extension of the EVM analysis for project monitoring: the cost control index and the schedule control index[J]. International Journal of Project Management, 2011, 29(5): 615-621. doi: 10.1016/j.ijproman.2010.04.005
    [23] Zhang Mingwen, Ma Chunguang, Huang Jiawei, et al. Investigating the jamming effect of HPM with different frequencies on SDR[J]. Microwave and Optical Technology Letters, 2024, 66(9): e34326. doi: 10.1002/mop.34326
    [24] Shaw J A. Radiometry and the Friis transmission equation[J]. American Journal of Physics, 2013, 81(1): 33-37. doi: 10.1119/1.4755780
    [25] Zhang Mingwen, Ma Chunguang, Huang Jiawei, et al. Investigating dual-frequency HPM interference effect on communication system: insights from LNA to SDR[J]. IEEE Access, 2024, 12: 173410-173417. doi: 10.1109/ACCESS.2024.3501578
  • 加载中
图(9)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-22
  • 修回日期:  2022-08-26
  • 录用日期:  2025-08-12
  • 网络出版日期:  2025-09-11

目录

    /

    返回文章
    返回