留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率GaN基蓝光二极管激光器(LD)的性能退化实验研究

谢鹏飞 张永刚 王丞乾 吕文强 武德勇 郭林辉 雷军 王昭 高松信

谢鹏飞, 张永刚, 王丞乾, 等. 高功率GaN基蓝光二极管激光器(LD)的性能退化实验研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250150
引用本文: 谢鹏飞, 张永刚, 王丞乾, 等. 高功率GaN基蓝光二极管激光器(LD)的性能退化实验研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250150
Pengfei Xie, Yonggang Zhang, Chengqian Wang, et al. The research on influence factors of high power GaN blue diode laser (LD) performance degradation[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250150
Citation: Pengfei Xie, Yonggang Zhang, Chengqian Wang, et al. The research on influence factors of high power GaN blue diode laser (LD) performance degradation[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250150

高功率GaN基蓝光二极管激光器(LD)的性能退化实验研究

doi: 10.11884/HPLPB202537.250150
基金项目: 中国工程物理研究院发展基金(C-2023JMRH-LG)
详细信息
    通讯作者:

    郭林辉,E-mail:glh863@163.com

  • 中图分类号: TN248.4

The research on influence factors of high power GaN blue diode laser (LD) performance degradation

  • 摘要: 高功率GaN基蓝光二极管激光器在工业加工、铜材料焊接、3D打印、水下激光通信等技术领域有着广泛的应用前景。蓝光二极管激光芯片COS单元器件具有热阻低和尺寸小的优点,但是该器件存在可靠性较低的问题,导致其在工业化应用中受到一定限制,因此对其性能退化因素进行深入研究。基于光学显微技术、扫描电子显微表征和能谱分析手段对经过长时老化考核后器件的性能退化因素进行分析研究。实验研究和分析表明,GaN基体材料缺陷、腔面多余物沉积和光化学腐蚀是导致蓝光二极管激光芯片性能退化的主因,同时良好的气密性封装可提高二极管激光芯片的可靠性。
  • 图  1  LD老化考核试验装置

    Figure  1.  The aging assessment of LD

    图  2  不同状态下的LD输出功率

    Figure  2.  The optical power curve of the LD

    图  3  LD在长时老化考核前后的输出波长变化统计

    Figure  3.  The wavelength statistics of the hermetic packaged LD and non-hermetic packaged LD

    图  4  非气密封LD前腔面。(a)未老化,(b)老化100小时后,(c)老化1100小时后

    Figure  4.  The images of front cavity surface of the non-hermetic packaged COS

    图  5  气密封LD长时老化考核后的前腔面

    Figure  5.  The images of front cavity surface of the hermetic packaged COS after 1100h aging

    图  6  非气密封LD前腔面附着物SEM和EDS分析

    Figure  6.  SEM and EDS analysis of the front cavity surface of a non-hermetic LD

    图  7  非气密封LD老化考核后的SEM和EDS

    Figure  7.  SEM and EDS analysis of the front cavity surface of non-hermetic LD after 1100h aging

    图  8  COD失效后的LD SEM和EDS分析

    Figure  8.  The images of the COD LD

    表  1  EDS各元素占比

    Table  1.   The contents of the elements

    Elt. Atomic/% Atomic Ratio Conc./(wt.%)
    N 0.000 0.0000 0.000
    O 35.256 1.0000 16.862
    Al 23.464 0.6655 18.925
    Si 25.972 0.7367 21.805
    Ga 12.422 0.3523 25.890
    Sn 0.205 0.0058 0.727
    Au 2.682 0.0761 15.792
    Total 100.000 100.000
    下载: 导出CSV
  • [1] Pelaprat J M, Finuf M, Gleeson R, et al. Blue lasers move deeper into applications: higher power and brightness enable new capabilities[J]. PhotonicsViews, 2020, 17(4): 41-45. doi: 10.1002/phvs.202000032
    [2] Wu Yueting, Zhang Fengchao, Zhang Xinning, et al. Manufacturing and reliability analysis of high-brightness blue light semiconductor laser[C]. Proceedings of SPIE 12867, High-Power Diode Laser Technology XXII. 2024: 128670D.
    [3] Nakazumi M, Oguri A, Ishige Y, et al. Hybrid laser system with blue laser and near-infrared fiber laser for copper welding[C]. Proceedings of SPIE 11983, High-Power Diode Laser Technology XX. 2022: 119830J.
    [4] Balck A, Baumann M, Malchus J, et al. 700W blue fiber-coupled diode-laser emitting at 450 nm[C]. Proceedings of SPIE 10514, High-Power Diode Laser Technology XVI. 2018: 1051403.
    [5] 郭林辉, 蒋全伟, 吴华玲, 等. 基于光栅光谱合束的蓝光高亮度半导体激光源[J]. 中国激光, 2024, 51: 1301007 doi: 10.3788/CJL231211

    Guo Linhui, Jiang Quanwei, Wu Hualing, et al. High-brightness blue semiconductor laser source based on grating spectral beam combining[J]. Chinese Journal of Lasers, 2024, 51: 1301007 doi: 10.3788/CJL231211
    [6] Hatakeyama K, Tanahashi Y, Konishi R, et al. High-power and high-luminance blue laser module using GaN-based laser diodes[C]. Proceedings of SPIE 12867, High-Power Diode Laser Technology XXII. 2024: 128670B.
    [7] Nakatsu Y, Nagao Y, Kozuru K, et al. High-efficiency blue and green laser diodes for laser displays[C]. Proceedings of SPIE 10918, Gallium Nitride Materials and Devices XIV. 2019: 109181D.
    [8] 吴鹏, 张玲, 于海娟, 等. 144W高功率、高亮度半导体蓝光激光器[J]. 中国激光, 2016, 43: 0519002 doi: 10.3788/CJL201643.0519002

    Wu Peng, Zhang Ling, Yu Haijuan, et al. 144W high power、high brightness blue semiconductor laser[J]. Chinese Journal of Lasers, 2016, 43: 0519002 doi: 10.3788/CJL201643.0519002
    [9] Schwarz U T, Schoedl T, Kümmler V, et al. Laser diode facet degradation study[J]. MRS Online Proceedings Library, 2003, 798(1): 255-258.
    [10] Kümmler V, Lell A, Härle V, et al. Gradual facet degradation of (Al, In)GaN quantum well lasers[J]. Applied Physics Letters, 2004, 84(16): 2989-2991. doi: 10.1063/1.1704861
    [11] Kim C C, Choi Y, Jang Y H, et al. Degradation modes of high-power InGaN/GaN laser diodes on low-defect GaN substrates[C]. Proceedings of SPIE 6894, Gallium Nitride Materials and Devices III. 2008: 68940O.
    [12] Monti D, Meneghini M, De Santi C, et al. Long-term degradation of InGaN-based laser diodes: role of defects[J]. Microelectronics Reliability, 2017, 76/77: 584-587.
    [13] Marona L, Wisniewski P, Wzorek M, et al. Surface photochemical corrosion as a mechanism for fast degradation of InGaN UV laser diodes[J]. ACS Applied Materials & Interfaces, 2020, 12(46): 52089-52094.
    [14] Wang Xiaowei, Liu Zongshun, Zhao Degang, et al. New mechanisms of cavity facet degradation for GaN-based laser diodes[J]. Journal of Applied Physics, 2021, 129: 223106. doi: 10.1063/5.0051126
    [15] Trivellin N, Meneghini M, De Santi C, et al. Degradation of InGaN lasers: role of non-radiative recombination and injection efficiency[J]. Microelectronics Reliability, 2011, 51(9/11): 1747-1751.
    [16] Huang Yujie, Yang Jing, Zhao Degang, et al. Optical and electrical degradation behavior of GaN-based UV-A laser diodes[J]. Applied Physics Letters, 2024, 125: 172102. doi: 10.1063/5.0228675
    [17] 郎陆广. 蓝光GaN基LD的可靠性研究[D]. 北京: 北京工业大学, 2018

    Lang Luguang. Reliability research of Blu-Ray GaN LD[D]. Beijing: Beijing University of Technology, 2018
    [18] Xiu Huixin, Xu Peng, Wen Pengyan, et al. Rapid degradation of InGaN/GaN green laser diodes[J]. Superlattices and Microstructures, 2020, 142: 106517. doi: 10.1016/j.spmi.2020.106517
    [19] Huang Yujie, Yang Jing, Liu Zongshun, et al. Investigation of degradation mechanism in GaN-based blue and ultraviolet laser diodes[J]. Journal of Applied Physics, 2023, 134: 095701. doi: 10.1063/5.0160833
    [20] Xu Peng, Xiu Huixin, Yin Luqiao, et al. The effect of humidity on the degradation mechanisms of GaN-based green laser diodes[J]. Optics & Laser Technology, 2023, 157: 108662.
    [21] Strauss U, Somers A, Heine U, et al. GaInN laser diodes from 440 to 530 nm: a performance study on single-mode and multi-mode R&D designs[C]. Proceedings of SPIE 10123, Novel In-Plane Semiconductor Lasers XVI. 2017: 101230A.
    [22] Mura G, Vanzi M, Hempel M, et al. Analysis of GaN based high-power diode lasers after singular degradation events[J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2017, 11: 1700132. doi: 10.1002/pssr.201700132
    [23] Hempel M, Tomm J W, Stojetz B, et al. Kinetics of catastrophic optical damage in GaN-based diode lasers[J]. Semiconductor Science and Technology, 2015, 30: 072001. doi: 10.1088/0268-1242/30/7/072001
    [24] Tomm J W, Ziegler M, Hempel M, et al. Mechanisms and fast kinetics of the catastrophic optical damage (COD) in GaAs-based diode lasers[J]. Laser & Photonics Reviews, 2011, 5(3): 422-441.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  14
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-23
  • 修回日期:  2025-09-30
  • 录用日期:  2025-10-05
  • 网络出版日期:  2025-11-08

目录

    /

    返回文章
    返回