留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型相控阵通信系统非对称损伤效应实验研究

张荣威 李平 孔海龙 汤桂花

张荣威, 李平, 孔海龙, 等. 典型相控阵通信系统非对称损伤效应实验研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250152
引用本文: 张荣威, 李平, 孔海龙, 等. 典型相控阵通信系统非对称损伤效应实验研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250152
Zhang Rongwei, Li Ping, Kong Hailong, et al. Experimental study on asymmetric damage effect of phased array communication system[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250152
Citation: Zhang Rongwei, Li Ping, Kong Hailong, et al. Experimental study on asymmetric damage effect of phased array communication system[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250152

典型相控阵通信系统非对称损伤效应实验研究

doi: 10.11884/HPLPB202537.250152
详细信息
    作者简介:

    张荣威,18966902276@vip.163.com

  • 中图分类号: TN975

Experimental study on asymmetric damage effect of phased array communication system

  • 摘要: 高功率微波可通过“前门”耦合毁伤通信系统的射频前端关键器件,导致系统性能降级或失效。对于相控阵通信系统,其射频通道数量多,各射频通道损伤程度并不一致,这种非对称的损伤会造成相控阵天线波束合成受到影响,导致系统性能更加恶化。通过半实物仿真实验和系统级辐照实验,开展了典型相控阵通信系统的非对称损伤效应研究。研究结果表明,高功率微波毁伤相控阵通信系统后将造成各通道出现非对称损伤,且幅相不一致性越大,尤其是相位不一致性越大,系统性能受到的额外损失也就越大。
  • 图  1  误差矢量幅度过大导致解调质量下降

    Figure  1.  EVM leads to a decrease in demodulation accuracy

    图  2  半实物仿真实验系统框图

    Figure  2.  Block diagram of the semi-physical simulation experiment system

    图  3  系统级辐照实验系统框图

    Figure  3.  Block diagram of the system-level irradiation experiment system

    图  4  系统性能降级随幅度均值变化关系

    Figure  4.  Variation relationship of system performance degradation with the mean amplitude

    图  5  系统性能降级随幅度标准差变化关系

    Figure  5.  Variation relationship of system performance degradation with the amplitude standard deviation

    图  6  系统性能降级随相移标准差变化关系

    Figure  6.  Variation relationship of system performance degradation with the phase shift standard deviation

    图  7  实验前后频谱仪接收通信信号功率变化

    Figure  7.  Variation in power received by the spectrum analyzer before and after the experiment

  • [1] Brookner E. Recent developments and future trends in phased arrays[C]//Proceedings of the 2013 IEEE International Symposium on Phased Array Systems and Technology. 2013: 43-53.
    [2] Kharalkar A, Batabyal A, Zele R, et al. A review of phased-array receiver architectures for 5G communications[C]//Proceedings of the 2022 IEEE Region 10 Symposium (TENSYMP). 2022: 1-6.
    [3] Youn Y, Wu Jinkai, Topözlü H, et al. Recent advancements on wideband phased array antennas for high power microwave applications[C]//Proceedings of the 2024 IEEE International Symposium on Phased Array Systems and Technology (ARRAY). 2024: 1-7.
    [4] 李靖, 王金海, 刘彦刚, 等. 卫星通信中相控阵天线的应用及展望[J]. 无线电工程, 2019, 49(12):1076-1084 doi: 10.3969/j.issn.1003-3106.2019.12.011

    Li Jing, Wang Jinhai, Liu Yan’gang, et al. Application and prospect of phased array antenna in satellite communications[J]. Radio Engineering, 2019, 49(12): 1076-1084 doi: 10.3969/j.issn.1003-3106.2019.12.011
    [5] 王从思, 于蓉, 王艳, 等. 有源相控阵天线服役性能调控技术进展与挑战[J]. 电子机械工程, 2023, 39(1):12-20

    Wang Congsi, Yu Rong, Wang Yan, et al. Progress and challenge of operating performance regulation technology for active phased array antennas[J]. Electro-Mechanical Engineering, 2023, 39(1): 12-20
    [6] 韩晓东, 孙清洋, 舒汀, 等. 机载有源相控阵雷达抗干扰试验评估研究[J]. 现代雷达, 2017, 39(2):91-96

    Han Xiaodong, Sun Qingyang, Shu Ting, et al. A study on the anti-jamming test and evaluation of airborne active phased array radar[J]. Modern Radar, 2017, 39(2): 91-96
    [7] Wada Y, Kikuchi H, Yoshikawa E, et al. Phase and amplitude correction for adaptive beamforming of phased array weather radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5111011.
    [8] Yang Haining, Yi Shijia, Li Tingjun, et al. A channel calibration and beamforming approach for elemental multi-function digital phased array[C]//Proceedings of the 2022 IEEE Radar Conference (RadarConf22). 2022: 1-5.
    [9] Bakr O M, Johnson M. Impact of phase and amplitude errors on array performance[R]. Technical Report No. UCB/EECS-2009-1, 2009.
    [10] Zhang Yonghua, Huang Wenhua, Li Ping, et al. Analysis of influence of channel damage on phased array communication links[C]//Proceedings of the 2019 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC). 2019: 306-310.
  • 加载中
图(7)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  46
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-24
  • 修回日期:  2025-06-12
  • 录用日期:  2025-07-12
  • 网络出版日期:  2025-07-29

目录

    /

    返回文章
    返回