[1] |
毋召锋, 徐延林, 刘培国, 等. 电磁防护技术发展综述与展望[J]. 强激光与粒子束, 2024, 36: 043001 doi: 10.11884/HPLPB202436.230375Wu Zhaofeng, Xu Yanlin, Liu Peiguo, et al. Review and prospect of electromagnetic protection technology development[J]. High Power Laser and Particle Beams, 2024, 36: 043001 doi: 10.11884/HPLPB202436.230375
|
[2] |
郑浩月, 贺宇, 何小东, 等. 电控单元强电磁安全威胁分析及电源防护研究[J]. 强激光与粒子束, 2020, 32: 073003 doi: 10.11884/HPLPB202032.200092Zheng Haoyue, He Yu, He Xiaodong, et al. Analysis of safety threat from high electromagnetic pulses and power protection research of vehicle electronic control unit[J]. High Power Laser and Particle Beams, 2020, 32: 073003 doi: 10.11884/HPLPB202032.200092
|
[3] |
Li Mei, Wei Guanghui. A review of quantitative evaluation of electromagnetic environmental effects: research progress and trend analysis[J]. Sensors, 2023, 23: 4257. doi: 10.3390/s23094257
|
[4] |
张金颢, 周恒, 张守龙, 等. 基于仿真及神经网络的大型电磁脉冲模拟器近区场计算[J]. 电子学报, 2023, 51(3): 712-719 doi: 10.12263/DZXB.20211137Zhang Jinhao, Zhou Heng, Zhang Shoulong, et al. Calculation of near-field of large-scale electromagnetic pulse simulator based on simulation and neural network[J]. Acta Electronica Sinica, 2023, 51(3): 712-719 doi: 10.12263/DZXB.20211137
|
[5] |
叶志红, 石艳超, 周健健. 电子设备贯通导线的电磁耦合时域分析算法[J]. 系统工程与电子技术, 2020, 42(8): 1673-1678 doi: 10.3969/j.issn.1001-506X.2020.08.05Ye Zhihong, Shi Yanchao, Zhou Jianjian. Time domain analysis algorithm of electromagnetic coupling of penetrated wire connecting to electronic device[J]. Systems Engineering and Electronics, 2020, 42(8): 1673-1678 doi: 10.3969/j.issn.1001-506X.2020.08.05
|
[6] |
胡文文. 电子设备的电磁脉冲耦合特性研究[D]. 合肥: 合肥工业大学, 2020Hu Wenwen. Research on the coupling characteristics of electromagnetic pulse in electronic equipment[D]. Hefei: Hefei University of Technology, 2020
|
[7] |
张国宾. 强磁场对典型电子器件影响机理的研究[D]. 兰州: 兰州大学, 2011Zhang Guobin. Investigation of the influence of intense magnetic field on electric devices[D]. Lanzhou: Lanzhou University, 2011
|
[8] |
张存瑞, 米玉洁, 王喆, 等. 强电磁脉冲对武器装备电子系统毁伤效应分析及电磁防护材料技术[J]. 应用物理, 2022, 12(5): 304-310 doi: 10.12677/APP.2022.125035Zhang Cunrui, Mi Yujie, Wang Zhe, et al. Damage effect analysis of strong electromagnetic pulse on the electronic system of weapon equipment and the technology of electromagnetic protection materials[J]. Applied Physics, 2022, 12(5): 304-310 doi: 10.12677/APP.2022.125035
|
[9] |
景明勇. 基于里德堡原子的微波超外差精密测量研究[D]. 太原: 山西大学, 2020Jing Mingyong. Microwave precision measurement based on Rydberg-atom superhet[D]. Taiyuan: Shanxi University, 2020
|
[10] |
刘钊. 铌酸锂集成光学电场传感器关键技术研究[D]. 成都: 电子科技大学, 2023Liu Zhao. Key technology research of lithium niobate integrated optical electric field sensor[D]. Chengdu: University of Electronic Science and Technology of China, 2023
|
[11] |
Meyer D H, Castillo Z A, Cox K C, et al. Assessment of Rydberg atoms for wideband electric field sensing[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53: 034001. doi: 10.1088/1361-6455/ab6051
|
[12] |
Hrvoic I, Hollyer G M, Eng P. Brief review of quantum magnetometers[R]. Richmond Hill, Canada: GEM Systems Technical Papers, 2005.
|
[13] |
Hinkley N, Sherman J A, Phillips N B, et al. An atomic clock with 10−18 instability[J]. Science, 2013, 341(6151): 1215-1218. doi: 10.1126/science.1240420
|
[14] |
Ludlow A D, Boyd M M, Ye Jun, et al. Optical atomic clocks[J]. Reviews of Modern Physics, 2015, 87(2): 637-701. doi: 10.1103/RevModPhys.87.637
|
[15] |
Sedlacek J A, Schwettmann A, Kübler H, et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 2012, 8(11): 819-824. doi: 10.1038/nphys2423
|
[16] |
Piotrowicz M J, MacCormick C, Kowalczyk A, et al. Measurement of the electric dipole moments for transitions to rubidium Rydberg states via Autler–Townes splitting[J]. New Journal of Physics, 2011, 13: 093012. doi: 10.1088/1367-2630/13/9/093012
|
[17] |
Mohapatra A K, Bason M G, Butscher B, et al. A giant electro-optic effect using polarizable dark states[J]. Nature Physics, 2008, 4(11): 890-894. doi: 10.1038/nphys1091
|
[18] |
Jau Y Y, Carter T. Vapor-cell-based atomic electrometry for detection frequencies below 1 kHz[J]. Physical Review Applied, 2020, 13: 054034. doi: 10.1103/PhysRevApplied.13.054034
|
[19] |
Wade C G, Šibalić N, de Melo N R, et al. Real-time near-field terahertz imaging with atomic optical fluorescence[J]. Nature Photonics, 2017, 11(1): 40-43. doi: 10.1038/nphoton.2016.214
|
[20] |
Li Danyang, Bai Zhengyang, Zuo Xiaoliang, et al. Room temperature single-photon terahertz detection with thermal Rydberg atoms[J]. Applied Physics Reviews, 2024, 11: 041420. doi: 10.1063/5.0219879
|
[21] |
Liu Xiaohong, Liao Kaiyu, Zhang Zuanxian, et al. Continuous-frequency microwave heterodyne detection in an atomic vapor cell[J]. Physical Review Applied, 2022, 18: 054003. doi: 10.1103/PhysRevApplied.18.054003
|
[22] |
Holloway C L, Gordon J A, Simons M T, et al. Atom-based RF field probe: from self-calibrated measurements to sub-wavelength imaging[C]//2015 IEEE 15th International Conference on Nanotechnology. 2015: 789-791.
|
[23] |
Anderson D A, Sapiro R E, Raithel G. A self-calibrated SI-traceable Rydberg atom-based radio frequency electric field probe and measurement instrument[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(9): 5931-5941. doi: 10.1109/TAP.2021.3060540
|
[24] |
Jing Mingyong, Hu Ying, Ma Jie, et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 2020, 16(9): 911-915. doi: 10.1038/s41567-020-0918-5
|
[25] |
Paradis E, Raithel G, Anderson D A. Atomic measurements of high-intensity VHF-band radio-frequency fields with a Rydberg vapor-cell detector[J]. Physical Review A, 2019, 100: 013420. doi: 10.1103/PhysRevA.100.013420
|
[26] |
贺青, 李栋, 谷立, 等. 基于里德堡原子的无线电技术研究进展[J]. 强激光与粒子束, 2024, 36: 079001 doi: 10.11884/HPLPB202436.240061He Qing, Li Dong, Gu Li, et al. Research progress in radio technology based on Rydberg atoms[J]. High Power Laser and Particle Beams, 2024, 36: 079001 doi: 10.11884/HPLPB202436.240061
|
[27] |
Holloway C L, Simons M T, Gordon J A, et al. Electric field metrology for SI traceability: systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor[J]. Journal of Applied Physics, 2017, 121: 233106. doi: 10.1063/1.4984201
|
[28] |
Yan Yang, Yuan Jinpeng, Zhang Linjie, et al. Three-dimensional location system based on an L-shaped array of Rydberg atomic receivers[J]. Optics Letters, 2023, 48(15): 3945-3948. doi: 10.1364/OL.496057
|
[29] |
Mao Ruiqi, Lin Yi, Fu Yunqi, et al. Digital beamforming and receiving array research based on Rydberg field probes[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(2): 2025-2029. doi: 10.1109/TAP.2023.3327812
|
[30] |
Robinson A K, Prajapati N, Senic D, et al. Determining the angle-of-arrival of a radio-frequency source with a Rydberg atom-based sensor[J]. Applied Physics Letters, 2021, 118: 114001. doi: 10.1063/5.0045601
|
[31] |
Kumar S, Fan Haoquan, Kübler H, et al. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells[J]. Optics Express, 2017, 25(8): 8625-8637. doi: 10.1364/OE.25.008625
|
[32] |
Wu Bo, Liao Dunwei, Sang Di, et al. Enhancing sensitivity of an atomic microwave receiver via a Fabry-Perot cavity[J]. IEEE Transactions on Antennas and Propagation, 2025, 73(2): 863-872. doi: 10.1109/TAP.2024.3480459
|