留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强爆炸后裂变产物产生的缓发γ与中子产生的次级γ剂量研究

范闯 范杰清 张芳 刘佳文 赵强 薛碧曦 公延飞 郝建红 董志伟

范闯, 范杰清, 张芳, 等. 强爆炸后裂变产物产生的缓发γ与中子产生的次级γ剂量研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250157
引用本文: 范闯, 范杰清, 张芳, 等. 强爆炸后裂变产物产生的缓发γ与中子产生的次级γ剂量研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250157
Fan Chuang, Fan Jieqing, ZhangFang, et al. Study on delayed gamma dose produced by fission products and the secondary gamma dose Produced by neutrons after strong explosion[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250157
Citation: Fan Chuang, Fan Jieqing, ZhangFang, et al. Study on delayed gamma dose produced by fission products and the secondary gamma dose Produced by neutrons after strong explosion[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250157

强爆炸后裂变产物产生的缓发γ与中子产生的次级γ剂量研究

doi: 10.11884/HPLPB202537.250157
基金项目: 国家自然科学青年基金项目(12205024)
详细信息
    作者简介:

    范 闯,1005768146@qq.com

    通讯作者:

    张 芳,fangzhang328@163.com

  • 中图分类号: TL91

Study on delayed gamma dose produced by fission products and the secondary gamma dose Produced by neutrons after strong explosion

  • 摘要: 强爆炸释放的γ辐射剂量评估是核应急防护体系研究的重要方向之一,传统研究多聚焦于瞬发γ(<1 μs)的剂量评估,缓发γ(秒级)因时间延迟常被忽视。本文针对强爆炸后裂变产物在0.2~0.5 s内产生的缓发γ剂量与中子泄露产生的次级γ剂量开展研究,基于蒙特卡罗(MC)方法构建了强爆炸源项-大气输运-地表活化耦合的三维全尺度模型,提出基于MC多步计算的动态剂量评估框架,利用重要性卡降低一定距离内实验模拟的方差,详细对比了其与瞬发γ剂量随时间距离变化的趋势。模拟结果表明,在0.2–0.5秒窗口内,距爆炸源500 m处缓发γ总剂量达0.829 Gy,为瞬发剂量(0.441 Gy)的1.88倍;距爆炸源1000 m处仅裂变产物产生的缓发剂量(0.0318 Gy)为瞬发剂量(0.0042 Gy)的7.6倍,远距离下危害相较瞬发尤为显著;而中子泄漏产生的γ剂量500 m到1000 m的剂量由0.634 Gy逐步衰减至0.0485 Gy。本文提出动态剂量评估框架,为核应急防护策略优化提供了数据支撑。
  • 图  1  3D几何模型

    Figure  1.  3D geometric model

    图  2  2D 几何模型

    Figure  2.  2D geometric model

    图  3  235U裂变瞬发γ辐射能谱

    Figure  3.  Instantaneous gamma radiation spectrum

    图  4  不同时间权重取值的散点与拟合曲线

    Figure  4.  Scatter and fitting curves of weight values at different times

    图  5  同条件下的本文MC模拟和文献中裂变产物产生的γ剂量

    Figure  5.  Gamma dose values generated by fission products in MC simulations under the same conditions

    图  6  修改重要性前后不同距离下的方差

    Figure  6.  Error at different distances before and after modifying importance

    图  7  不同距离下裂变产物、瞬发能谱以及中子泄漏能谱产生的γ剂量

    Figure  7.  Gamma dose generated by fission products, instantaneous energy spectra, and neutron leakage energy spectra at different distances

    表  1  235U裂变产物衰变产生的γ辐射能谱

    Table  1.   Gamma-ray spectra from decay of 235U fission products

    Energy interval
    midpoint/MeV
    0.2~0.5 s/
    (photons·fission−1·sec−1·MeV−1)
    1.0~2.0 s 4.0~5.5 s 10~13 s 35-45 s
    0.175 1.33 5.37E-01 3.20E-1 1.45E-1 3.85E-2
    0.261 6.87E-01 3.37E-01 1.95E-1 9.30E-2 2.48E-2
    0.369 4.60E-01 2.35E-01 1.31E-1 6.17E-2 1.86E-2
    0.502 4.92E-01 2.98E-01 1.65E-1 7.19E-2 1.67E-2
    0.662 3.28E-01 1.94E-01 1.03E-1 4.66E-2 1.19E-2
    0.7852 3.00E-01 1.53E-01 6.50E-2 3.10E-2 1.03E-2
    1.075 2.18E-01 1.33E-01 5.62E-2 2.55E-2 7.91E-3
    1.537 1.45E-01 7.72E-02 3.73E-2 1.95E-2 6.84E-3
    1.643 8.68E-02 5.06E-02 2.66E-2 1.20E-2 4.06E-3
    1.998 6.17E-02 3.46E-02 1.69E-2 7.56E-3 2.47E-3
    2.405 3.86E-02 2.17E-02 1.09E-2 5.12E-3 1.78E-3
    2.865 2.87E-02 1.62E-02 7.12E-3 3.51E-3 1.26E-3
    3.383 1.85E-02 1.07E-02 5.29E-3 2.19E-3 6.10E-4
    3.956 9.71E-03 5.74E-03 2.64E-3 1.24E-3 4.60E-4
    4.587 7.96E-03 3.37E-03 1.55E-3 7.12E-4 2.12E-4
    5.277 1.67E-03 1.21E-03 5.86E-4 2.94E-4 8.95E-5
    6.028 1.94E-03 7.20E-04 4.54E-4 1.65E-4 4.16E-5
    下载: 导出CSV

    表  2  典型中子泄漏能谱

    Table  2.   Neutron leakage spectrum of typical nuclear weapons

    Energy interval midpoint/MeV Neutrons/KT Energy interval midpoint/MeV Neutrons/KT
    0.05715 2.22E+22 5.21 3E+21
    0.6105 3.84E+22 7.27 1.27E+21
    1.73 2.52E+22 9.09 7.32E+20
    3.205 8.9E+21 _ _
    下载: 导出CSV

    表  3  权重值代替的缓发γ能谱

    Table  3.   Delayed gamma spectrum replaced by weight values

    Energy interval midpoint/MeV 0.2-0.5 s Energy interval midpoint/MeV 0.2-0.5 s Energy interval midpoint/MeV 0.2-0.5 s
    0.175 6.88E+21 1.075 2.68E+21 3.383 6.65E+20
    0.261 4.46E+21 1.537 2.10E+21 3.956 4.48E+20
    0.369 3.74E+21 1.643 1.67E+21 4.587 3.48E+20
    0.502 3.73E+21 1.998 1.58E+21 5.277 1.19E+20
    0.662 3.42E+21 2.405 1.31E+21 6.028 1.80E+20
    0.7852 3.35E+21 2.865 1.02E+21 _ _
    下载: 导出CSV

    表  4  修改重要性前后各栅元粒子数

    Table  4.   Number of particles in each grid element before and after modifying importance

    cell Particles (before) Particles (after)
    31 3104201 3236183
    32 452471 3292005
    33 66001 3214688
    34 21416 3324995
    35 5190 3372750
    36 6608 3241357
    下载: 导出CSV
  • [1] Aloraini D A, Almuqrin A H, Jagannath G, et al. Impact of heavy metal oxide on nanosecond nonlinear optical, optical limiting and gamma radiation shielding attributes of borate glasses for laser and nuclear radiation protection applications[J]. Applied Physics A, 2022, 128(8): 634. doi: 10.1007/s00339-022-05772-x
    [2] Simon S L, Bouville A. Health effects of nuclear weapons testing[J]. The Lancet, 2015, 386(9992): 407-409. doi: 10.1016/S0140-6736(15)61037-6
    [3] 欧阳建明, 马燕云, 邵福球, 等. 高空核爆炸瞬发γ射线对大气的电离及演化过程数值模拟[C]//中国核科学技术进展报告(第三卷)——中国核学会2013年学术年会论文集第6册(核物理分卷、计算物理分卷、粒子加速器分卷). 2013: 188-194

    Ouyang Jianming, Ma Yanyun, Shao Fuqiu, et al. Numerical simulation of ionizing processes by prompt γ-Rays and temporal evolutions of air at high-altitude nuclear explosions[C]//Chinese Nuclear Society Report on the Progress of Nuclear Science and Technology in China (Volume 3) - Proceedings of the 2013 Annual Conference of the Chinese Nuclear Society Volume 6 (Nuclear Physics, Computational Physics, Particle Accelerator) College of Science. 2013: 188-194
    [4] Murray L R. Introduction to Nuclear Engineering[J]. Physics Today, 2009, 8(10): 28.
    [5] 刘伟, 郑毅, 李小强. 核爆炸放射性沉降预警模型研究[J]. 核电子学与探测技术, 2021, 41(3): 459-464

    Liu Wei, Zheng Yi, Li Xiaoqiang. Research on early warning model of fallout of nuclear explosion[J]. Nuclear Electronics and Detection Technology, 2021, 41(3): 459-464
    [6] Davisson M L, Hamilton T F, Tompson A F B. Radioactive waste buried beneath Runit Dome on Enewetak Atoll, Marshall Islands[J]. International Journal of Environment and Pollution, 2012, 49(3/4): 161-178. doi: 10.1504/IJEP.2012.050897
    [7] 李欢欢. 太平洋核试验[J]. 世界环境, 2015(4): 90

    Li Huanhuan. Pacific nuclear tests[J]. World Environment, 2015(4): 90
    [8] Lochard J, Bartlett D T, Rühm W, et al. ICRP publication 132: radiological protection from cosmic radiation in aviation[J]. Annals of the ICRP, 2016, 45(1): 5-48. doi: 10.1177/0146645316645449
    [9] Miyazaki S. Future radiological protection system in harmony with the new ICRP recommendations[J]. Japanese Journal of Health Physics, 2008, 43(2): 140-143. doi: 10.5453/jhps.43.140
    [10] 刘超, 刘世龙, 杨毅, 等. 热中子诱发239Pu裂变初级裂变产物质量分布测量[J]. 原子能科学技术, 2022, 56(5): 798-804 doi: 10.7538/yzk.2022.youxian.0054

    Liu Chao, Liu Shilong, Yang Yi, et al. Measurement of post-neutron mass distribution in thermal-neutron-induced fission of 239Pu[J]. Atomic Energy Science and Technology, 2022, 56(5): 798-804 doi: 10.7538/yzk.2022.youxian.0054
    [11] 伍怀龙, 郝樊华, 唐元明. 反应堆中气体裂变产物释放问题的研究[J]. 核技术, 2007, 30(7): 633-636 doi: 10.3321/j.issn:0253-3219.2007.07.019

    Wu Huailong, Hao Fanhua, Tang Yuanming. Investigation of fission gases release in nuclear reactors[J]. Nuclear Techniques, 2007, 30(7): 633-636 doi: 10.3321/j.issn:0253-3219.2007.07.019
    [12] 赵连波, 金浪屿. 中子活化反应核技术项目辐射环境影响研究[J]. 环境科学与管理, 2025, 50(1): 172-177 doi: 10.3969/j.issn.1673-1212.2025.01.038

    Zhao Lianbo, Jin Langyu. Radiation environmental impact study for neutron activation reaction nuclear technology project[J]. Environmental Science and Management, 2025, 50(1): 172-177 doi: 10.3969/j.issn.1673-1212.2025.01.038
    [13] Isotalo A E, Aarnio P A. Higher order methods for burnup calculations with Bateman solutions[J]. Annals of Nuclear Energy, 2011, 38(9): 1987-1995. doi: 10.1016/j.anucene.2011.04.022
    [14] 朱金辉, 左应红, 刘利, 等. 蒙特卡罗方法在核爆辐射环境模拟中的应用与发展[J]. 现代应用物理, 2023, 14: 030104

    Zhu Jinhui, Zuo Yinghong, Liu Li, et al. Application and development of Monte Carlo method in simulation of nuclear explosion radiation environments[J]. Modern Applied Physics, 2023, 14: 030104
    [15] Xu Heng, Ouyang Jianming, Wang Shangwu, et al. Impact of atmospheric ionization by delayed radiation from high-altitude nuclear explosions on radio communication[J]. Nuclear Science and Techniques, 2019, 30(12): 179. doi: 10.1007/s41365-019-0703-2
    [16] 聂星辰, 李佳, 赵平辉, 等. 蒙特卡罗模拟CFETR中子输运计算中的全局减方差方法应用及对比[J]. 核技术, 2016, 39: 030501 doi: 10.11889/j.0253-3219.2016.hjs.39.030501

    Nie Xingchen, Li Jia, Zhao Pinghui, et al. Application and comparison of global variance reduction methods employed in Monte Carlo neutron transport for CFETR[J]. Nuclear Techniques, 2016, 39: 030501 doi: 10.11889/j.0253-3219.2016.hjs.39.030501
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  4
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-16
  • 修回日期:  2025-09-03
  • 录用日期:  2025-08-12
  • 网络出版日期:  2025-09-15

目录

    /

    返回文章
    返回