Study on delayed gamma dose produced by fission products and the secondary gamma dose Produced by neutrons after strong explosion
-
摘要: 强爆炸释放的γ辐射剂量评估是核应急防护体系研究的重要方向之一,传统研究多聚焦于瞬发γ(<1 μs)的剂量评估,缓发γ(秒级)因时间延迟常被忽视。本文针对强爆炸后裂变产物在0.2~0.5 s内产生的缓发γ剂量与中子泄露产生的次级γ剂量开展研究,基于蒙特卡罗(MC)方法构建了强爆炸源项-大气输运-地表活化耦合的三维全尺度模型,提出基于MC多步计算的动态剂量评估框架,利用重要性卡降低一定距离内实验模拟的方差,详细对比了其与瞬发γ剂量随时间距离变化的趋势。模拟结果表明,在0.2–0.5秒窗口内,距爆炸源500 m处缓发γ总剂量达0.829 Gy,为瞬发剂量(0.441 Gy)的1.88倍;距爆炸源
1000 m处仅裂变产物产生的缓发剂量(0.0318 Gy)为瞬发剂量(0.0042 Gy)的7.6倍,远距离下危害相较瞬发尤为显著;而中子泄漏产生的γ剂量500 m到1000 m的剂量由0.634 Gy逐步衰减至0.0485 Gy。本文提出动态剂量评估框架,为核应急防护策略优化提供了数据支撑。Abstract:Background The assessment of gamma radiation dose released by strong explosions is an important direction in the research of nuclear emergency protection systems. Traditional research has mostly focused on dose assessment of prompt gamma radiation (duration<1 μs), while delayed gamma radiation (on the second timescale) is often overlooked due to time delay.Purpose This article focuses on the study of the delayed gamma dose released by fission products after a strong explosion within 0.2-0.5 seconds, as well as the secondary gamma dose generated by neutron leakage, with the aim of systematically evaluating their radiation hazards in the near to medium range.Methods Based on monte carlo (MC) method, a three-dimensional full-scale model coupling strong explosive source term atmospheric transport surface activation was constructed, and a dynamic dose assessment framework based on MC multi-step calculation was proposed. By modifying the importance card method, the variance of the simulation results at medium to close distances was effectively reduced, and a detailed comparison was made between the changing trends of delayed gamma and prompt gamma doses over time and distance.Results The simulation results show that within a time window of 0.2-0.5 seconds: at a distance of 500 meters from the explosion source, the total dose of delayed gamma radiation reaches 0.829 Gy, which is 1.88 times the instantaneous gamma radiation dose (0.441 Gy); At a distance of1000 meters from the explosion source, the delayed gamma dose generated by fission products alone is0.0318 Gy, which is 7.6 times the instantaneous gamma dose (0.0042 Gy), indicating that the hazard of delayed gamma is significantly higher than that of instantaneous gamma at longer distances. The secondary gamma dose generated by neutron leakage decays from 0.634 Gy at 500 meters to0.0485 Gy at1000 meters.Conclusions The dynamic dose assessment framework proposed in this article effectively reveals the significant contribution of delayed gamma radiation in the early radiation field after a strong explosion, especially at a distance where its hazard far exceeds that of instantaneous gamma radiation. This study provides key data support for optimizing nuclear emergency protection strategies.-
Key words:
- fission products /
- delayed gamma dose /
- monte carlo method /
- variance reduction /
- soil modeling
-
表 1 235U裂变产物衰变产生的γ辐射能谱
Table 1. Gamma-ray spectra from decay of 235U fission products
Energy interval
midpoint/MeV0.2~0.5 s/
(photons·fission−1·sec−1·MeV−1)1.0~2.0 s 4.0~5.5 s 10~13 s 35-45 s 0.175 1.33 5.37E-01 3.20E-1 1.45E-1 3.85E-2 0.261 6.87E-01 3.37E-01 1.95E-1 9.30E-2 2.48E-2 0.369 4.60E-01 2.35E-01 1.31E-1 6.17E-2 1.86E-2 0.502 4.92E-01 2.98E-01 1.65E-1 7.19E-2 1.67E-2 0.662 3.28E-01 1.94E-01 1.03E-1 4.66E-2 1.19E-2 0.7852 3.00E-01 1.53E-01 6.50E-2 3.10E-2 1.03E-2 1.075 2.18E-01 1.33E-01 5.62E-2 2.55E-2 7.91E-3 1.537 1.45E-01 7.72E-02 3.73E-2 1.95E-2 6.84E-3 1.643 8.68E-02 5.06E-02 2.66E-2 1.20E-2 4.06E-3 1.998 6.17E-02 3.46E-02 1.69E-2 7.56E-3 2.47E-3 2.405 3.86E-02 2.17E-02 1.09E-2 5.12E-3 1.78E-3 2.865 2.87E-02 1.62E-02 7.12E-3 3.51E-3 1.26E-3 3.383 1.85E-02 1.07E-02 5.29E-3 2.19E-3 6.10E-4 3.956 9.71E-03 5.74E-03 2.64E-3 1.24E-3 4.60E-4 4.587 7.96E-03 3.37E-03 1.55E-3 7.12E-4 2.12E-4 5.277 1.67E-03 1.21E-03 5.86E-4 2.94E-4 8.95E-5 6.028 1.94E-03 7.20E-04 4.54E-4 1.65E-4 4.16E-5 表 2 典型中子泄漏能谱
Table 2. Neutron leakage spectrum of typical nuclear weapons
Energy interval midpoint/MeV Neutrons/KT Energy interval midpoint/MeV Neutrons/KT 0.05715 2.22E+22 5.21 3E+21 0.6105 3.84E+22 7.27 1.27E+21 1.73 2.52E+22 9.09 7.32E+20 3.205 8.9E+21 _ _ 表 3 权重值代替的缓发γ能谱
Table 3. Delayed gamma spectrum replaced by weight values
Energy interval midpoint/MeV 0.2-0.5 s Energy interval midpoint/MeV 0.2-0.5 s Energy interval midpoint/MeV 0.2-0.5 s 0.175 6.88E+21 1.075 2.68E+21 3.383 6.65E+20 0.261 4.46E+21 1.537 2.10E+21 3.956 4.48E+20 0.369 3.74E+21 1.643 1.67E+21 4.587 3.48E+20 0.502 3.73E+21 1.998 1.58E+21 5.277 1.19E+20 0.662 3.42E+21 2.405 1.31E+21 6.028 1.80E+20 0.7852 3.35E+21 2.865 1.02E+21 _ _ 表 4 修改重要性前后各栅元粒子数
Table 4. Number of particles in each grid element before and after modifying importance
cell Particles (before) Particles (after) 31 3104201 3236183 32 452471 3292005 33 66001 3214688 34 21416 3324995 35 5190 3372750 36 6608 3241357 -
[1] Aloraini D A, Almuqrin A H, Jagannath G, et al. Impact of heavy metal oxide on nanosecond nonlinear optical, optical limiting and gamma radiation shielding attributes of borate glasses for laser and nuclear radiation protection applications[J]. Applied Physics A, 2022, 128(8): 634. doi: 10.1007/s00339-022-05772-x [2] Simon S L, Bouville A. Health effects of nuclear weapons testing[J]. The Lancet, 2015, 386(9992): 407-409. doi: 10.1016/S0140-6736(15)61037-6 [3] 欧阳建明, 马燕云, 邵福球, 等. 高空核爆炸瞬发γ射线对大气的电离及演化过程数值模拟[C]//中国核科学技术进展报告(第三卷)——中国核学会2013年学术年会论文集第6册(核物理分卷、计算物理分卷、粒子加速器分卷). 2013: 188-194Ouyang Jianming, Ma Yanyun, Shao Fuqiu, et al. Numerical simulation of ionizing processes by prompt γ-Rays and temporal evolutions of air at high-altitude nuclear explosions[C]//Chinese Nuclear Society Report on the Progress of Nuclear Science and Technology in China (Volume 3) - Proceedings of the 2013 Annual Conference of the Chinese Nuclear Society Volume 6 (Nuclear Physics, Computational Physics, Particle Accelerator) College of Science. 2013: 188-194 [4] Murray L R. Introduction to Nuclear Engineering[J]. Physics Today, 2009, 8(10): 28. [5] 刘伟, 郑毅, 李小强. 核爆炸放射性沉降预警模型研究[J]. 核电子学与探测技术, 2021, 41(3): 459-464Liu Wei, Zheng Yi, Li Xiaoqiang. Research on early warning model of fallout of nuclear explosion[J]. Nuclear Electronics and Detection Technology, 2021, 41(3): 459-464 [6] Davisson M L, Hamilton T F, Tompson A F B. Radioactive waste buried beneath Runit Dome on Enewetak Atoll, Marshall Islands[J]. International Journal of Environment and Pollution, 2012, 49(3/4): 161-178. doi: 10.1504/IJEP.2012.050897 [7] 李欢欢. 太平洋核试验[J]. 世界环境, 2015(4): 90Li Huanhuan. Pacific nuclear tests[J]. World Environment, 2015(4): 90 [8] Lochard J, Bartlett D T, Rühm W, et al. ICRP publication 132: radiological protection from cosmic radiation in aviation[J]. Annals of the ICRP, 2016, 45(1): 5-48. doi: 10.1177/0146645316645449 [9] Miyazaki S. Future radiological protection system in harmony with the new ICRP recommendations[J]. Japanese Journal of Health Physics, 2008, 43(2): 140-143. doi: 10.5453/jhps.43.140 [10] 刘超, 刘世龙, 杨毅, 等. 热中子诱发239Pu裂变初级裂变产物质量分布测量[J]. 原子能科学技术, 2022, 56(5): 798-804 doi: 10.7538/yzk.2022.youxian.0054Liu Chao, Liu Shilong, Yang Yi, et al. Measurement of post-neutron mass distribution in thermal-neutron-induced fission of 239Pu[J]. Atomic Energy Science and Technology, 2022, 56(5): 798-804 doi: 10.7538/yzk.2022.youxian.0054 [11] 伍怀龙, 郝樊华, 唐元明. 反应堆中气体裂变产物释放问题的研究[J]. 核技术, 2007, 30(7): 633-636 doi: 10.3321/j.issn:0253-3219.2007.07.019Wu Huailong, Hao Fanhua, Tang Yuanming. Investigation of fission gases release in nuclear reactors[J]. Nuclear Techniques, 2007, 30(7): 633-636 doi: 10.3321/j.issn:0253-3219.2007.07.019 [12] 赵连波, 金浪屿. 中子活化反应核技术项目辐射环境影响研究[J]. 环境科学与管理, 2025, 50(1): 172-177 doi: 10.3969/j.issn.1673-1212.2025.01.038Zhao Lianbo, Jin Langyu. Radiation environmental impact study for neutron activation reaction nuclear technology project[J]. Environmental Science and Management, 2025, 50(1): 172-177 doi: 10.3969/j.issn.1673-1212.2025.01.038 [13] Isotalo A E, Aarnio P A. Higher order methods for burnup calculations with Bateman solutions[J]. Annals of Nuclear Energy, 2011, 38(9): 1987-1995. doi: 10.1016/j.anucene.2011.04.022 [14] 朱金辉, 左应红, 刘利, 等. 蒙特卡罗方法在核爆辐射环境模拟中的应用与发展[J]. 现代应用物理, 2023, 14: 030104Zhu Jinhui, Zuo Yinghong, Liu Li, et al. Application and development of Monte Carlo method in simulation of nuclear explosion radiation environments[J]. Modern Applied Physics, 2023, 14: 030104 [15] Xu Heng, Ouyang Jianming, Wang Shangwu, et al. Impact of atmospheric ionization by delayed radiation from high-altitude nuclear explosions on radio communication[J]. Nuclear Science and Techniques, 2019, 30(12): 179. doi: 10.1007/s41365-019-0703-2 [16] 聂星辰, 李佳, 赵平辉, 等. 蒙特卡罗模拟CFETR中子输运计算中的全局减方差方法应用及对比[J]. 核技术, 2016, 39: 030501 doi: 10.11889/j.0253-3219.2016.hjs.39.030501Nie Xingchen, Li Jia, Zhao Pinghui, et al. Application and comparison of global variance reduction methods employed in Monte Carlo neutron transport for CFETR[J]. Nuclear Techniques, 2016, 39: 030501 doi: 10.11889/j.0253-3219.2016.hjs.39.030501 -