留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轻小型C波段超材料相对论磁控管

肖紫燕 史迪夫 令钧溥 皮明瑶 丁彬

肖紫燕, 史迪夫, 令钧溥, 等. 轻小型C波段超材料相对论磁控管[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250159
引用本文: 肖紫燕, 史迪夫, 令钧溥, 等. 轻小型C波段超材料相对论磁控管[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250159
Xiao Ziyan, Shi Difu, Ling Junpu, et al. A light and small C-band metamaterial relativistic magnetron[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250159
Citation: Xiao Ziyan, Shi Difu, Ling Junpu, et al. A light and small C-band metamaterial relativistic magnetron[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250159

轻小型C波段超材料相对论磁控管

doi: 10.11884/HPLPB202537.250159
基金项目: 湖南省科技创新计划项目(2022RC1195)
详细信息
    作者简介:

    肖紫燕,xiaoziyan0907@163.com

    通讯作者:

    史迪夫,shidifu119@aliyun.com

  • 中图分类号: TN123

A light and small C-band metamaterial relativistic magnetron

  • 摘要: 相对论磁控管因其高功率转换效率、低工作磁场、结构简单紧凑等特性,已成为高功率微波源领域的研究热点。为了拓宽其应用场景,系统小型化与轻量化已成为相对论磁控管的重点技术攻关方向。传统微波源尤其是低频段微波源,受波长与径向尺寸的共度性约束,其慢波结构的径向尺寸往往需与工作波长同量级,这严重限制了其小型化和紧凑化设计。提出一种基于超材料的C波段全腔提取相对论磁控管,通过引入具有双负特性的超材料,突破传统共度性关系的限制,实现器件径向尺寸和重量的减小。仿真结果显示:在输入电压675 kV、磁场0.29 T条件下,器件输出功率为1.42 GW,功率转换效率为52.6%,频率为4.3 GHz。与传统相对论磁控管结构对比,当以上工作性能基本相同时,超材料的引入使阳极外半径缩减5.5 mm,尺寸减小幅度达12%,相应的永磁体重量可减轻22.8%。
  • 图  1  C波段超材料相对论磁控管结构示意图

    Figure  1.  Structure diagram of a C-band metamaterial relativistic magnetron

    图  2  超材料相对论磁控管3-D结构示意图

    Figure  2.  Schematic diagram of the 3-D structure of a metamaterial relativistic magnetron

    图  3  阳极块对比图

    Figure  3.  Comparison diagram of anode blocks

    图  4  等效介电常数和磁导率

    Figure  4.  Equivalent permittivity and permeability

    图  5  仿真输入功率波形

    Figure  5.  Input power in simulation

    图  6  仿真输出功率波形

    Figure  6.  Output power in simulation

    图  7  频谱图

    Figure  7.  Frequency spectrum

    图  8  电子轮辐图

    Figure  8.  Electronic spoke diagram

    图  9  输出口电场分布

    Figure  9.  Electric field distribution at the output port

    图  10  C波段传统相对论磁控管结构示意图

    Figure  10.  Structure diagram of a C-band traditional relativistic magnetron

    图  11  仿真输入功率波形

    Figure  11.  Input power in simulation

    图  12  仿真输出功率波形

    Figure  12.  Output power in simulation

    图  13  频谱图

    Figure  13.  Frequency spectrum

    图  14  电场强度分布

    Figure  14.  Electric field strength distribution

    图  15  磁力线分布

    Figure  15.  Distribution of magnetic field lines

    图  16  轴向磁场和径向磁场

    Figure  16.  Axial and radial magnetic fields

    表  1  相关主要参数

    Table  1.   Relevant main parameters

    rc/mm ra/mm ro/mm rs/mm θ1/(°)
    15 34 40 56 20
    下载: 导出CSV

    表  2  相关主要参数

    Table  2.   Relevant main parameters

    rc/mmra/mmro/mmrs/mmθ1/(°)
    153445.560.520
    下载: 导出CSV
  • [1] Andreev D, Kuskov A, Schamiloglu E. Review of the relativistic magnetron[J]. Matter and Radiation at Extremes, 2019, 4: 067201. doi: 10.1063/1.5100028
    [2] Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 2nd ed. Boca Raton: CRC Press, 2007.
    [3] 何朝雄, 李天明, 胡标. 相对论磁控管技术及其应用[J]. 真空电子技术, 2016(6):1-6

    He Chaoxiong, Li Tianming, Hu Biao. Technology and applications of relativistic magnetrons[J]. Vacuum Electronics, 2016(6): 1-6
    [4] 王冬, 秦奋, 杨郁林, 等. L波段全腔提取轴向输出相对论磁控管设计[J]. 强激光与粒子束, 2016, 28:033013 doi: 10.11884/HPLPB201628.033013

    Wang Dong, Qin Fen, Yang Yulin, et al. Design of L band all cavity axial extraction relativistic magnetron[J]. High Power Laser and Particle Beams, 2016, 28: 033013 doi: 10.11884/HPLPB201628.033013
    [5] Fuks M I, Schamiloglu E. 70% efficient relativistic magnetron with axial extraction of radiation through a horn antenna[J]. IEEE Transactions on Plasma Science, 2010, 38(6): 1302-1312. doi: 10.1109/TPS.2010.2042823
    [6] Leach C, Prasad S, Fuks M I, et al. Experimental demonstration of a high-efficiency relativistic magnetron with diffraction output with spherical cathode endcap[J]. IEEE Transactions on Plasma Science, 2017, 45(2): 282-288. doi: 10.1109/TPS.2016.2644625
    [7] He Chaoxiong, Wang Keqiang, Li Tianming, et al. A compact relativistic magnetron with diffraction output of TE11 mode[J]. IEEE Transactions on Plasma Science, 2024, 52(2): 285-290. doi: 10.1109/TPS.2024.3369932
    [8] Li Wei, Liu Yonggui, Zhang Jun, et al. Experimental investigations on the relations between configurations and radiation patterns of a relativistic magnetron with diffraction output[J]. Journal of Applied Physics, 2013, 113: 023304. doi: 10.1063/1.4774245
    [9] Xu Sha, Lei Lurong, Qin Fen, et al. Compact, high power and high efficiency relativistic magnetron with L-band all cavity axial extraction[J]. Physics of Plasmas, 2018, 25: 083301. doi: 10.1063/1.5041860
    [10] Liu Zeyang, Fan Yuwei, Wang Xiaoyu, et al. A high-efficiency relativistic magnetron with a novel all-cavity extraction structure[J]. AIP Advances, 2020, 10: 035104. doi: 10.1063/1.5102151
    [11] Liu Zeyang, Fan Yuwei, Wang Xiaoyu, et al. An improved high-efficiency relativistic magnetron with a novel cathode endcap[J]. AIP Advances, 2021, 11: 025239. doi: 10.1063/5.0028617
    [12] Xu Haodong, Wang Xiaoyu, Liu Zeyang, et al. A C-band relativistic magnetron with a novel extraction structure[J]. IEEE Transactions on Electron Devices, 2023, 70(3): 1270-1274. doi: 10.1109/TED.2023.3234017
    [13] 秦奋, 徐莎, 张勇, 等. Ku波段全腔提取相对论磁控管仿真设计[J]. 强激光与粒子束, 2024, 36:103007 doi: 10.11884/HPLPB202436.240165

    Qin Fen, Xu Sha, Zhang Yong, et al. Simulation investigation of Ku-band relativistic magnetron with all-cavity-axial-extraction[J]. High Power Laser and Particle Beams, 2024, 36: 103007 doi: 10.11884/HPLPB202436.240165
    [14] Shi Difu, Qian Baoliang, Wang Honggang, et al. A modified relativistic magnetron with TEM output mode[J]. Physics of Plasmas, 2017, 24: 013118. doi: 10.1063/1.4975006
    [15] Shi Difu, Qian Baoliang, Wang Honggang, et al. A novel relativistic magnetron with circularly polarized TE11 coaxial waveguide mode[J]. Journal of Physics D: Applied Physics, 2016, 49: 465104. doi: 10.1088/0022-3727/49/46/465104
    [16] Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 2000, 84(18): 4184-4187. doi: 10.1103/PhysRevLett.84.4184
    [17] Marqués R, Martel J, Mesa F, et al. Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides[J]. Physical Review Letters, 2002, 89: 183901. doi: 10.1103/PhysRevLett.89.183901
    [18] Esteban J, Camacho-Penalosa C, Page J E, et al. Simulation of negative permittivity and negative permeability by means of evanescent waveguide modes-theory and experiment[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(4): 1506-1514. doi: 10.1109/TMTT.2005.845194
    [19] Dai Ouzhixiong, He Juntao, Ling Junpu, et al. A novel L-band metamaterial relativistic cherenkov oscillator with high conversion efficiency[J]. Physics of Plasmas, 2019, 26: 023104. doi: 10.1063/1.5082754
    [20] 周传明, 刘国治, 刘永贵, 等. 高功率微波源[M]. 北京: 原子能出版社, 2007

    Zhou Chuanming, Liu Guozhi, Liu Yonggui, et al. High-power microwave sources[M]. Beijing: Atomic Energy Press, 2007
    [21] Smith D R, Vier D C, Koschny T, et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials[J]. Physical Review E, 2005, 71: 036617. doi: 10.1103/PhysRevE.71.036617
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  16
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-05
  • 修回日期:  2025-08-18
  • 录用日期:  2025-08-12
  • 网络出版日期:  2025-08-27

目录

    /

    返回文章
    返回