留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

W-band folded-waveguide traveling-wave tube with dual electron beams and H-plane power combining

Wang Huanyu Duan Jingrui Wang Zhanliang Tang Haichen Lu Zhigang Wang Shaomeng Gong Huarong Gong Yubin

王环宇, 段景瑞, 王战亮, 等. 基于H面功率合成的双电子注折叠波导行波管[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250160
引用本文: 王环宇, 段景瑞, 王战亮, 等. 基于H面功率合成的双电子注折叠波导行波管[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250160
Wang Huanyu, Duan Jingrui, Wang Zhanliang, et al. W-band folded-waveguide traveling-wave tube with dual electron beams and H-plane power combining[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250160
Citation: Wang Huanyu, Duan Jingrui, Wang Zhanliang, et al. W-band folded-waveguide traveling-wave tube with dual electron beams and H-plane power combining[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250160

基于H面功率合成的双电子注折叠波导行波管

doi: 10.11884/HPLPB202537.250160
详细信息
  • 中图分类号: TL501+.5

W-band folded-waveguide traveling-wave tube with dual electron beams and H-plane power combining

Funds: supported by National Natural Science Foundation of China (62471097, 62471115, 62471101); National Natural Science Foundation of Sichuan (2025ZNSFSC0537)
More Information
  • 摘要: 设计了一种W波段双注多通道H面功率合成折叠波导行波管,利用三维电磁仿真软件CST对所设计的慢波结构的高频特性、电场特性、放大特性进行了仿真分析。经计算,所设计的两路折叠波导功率合成结构能够实现10 GHz的传输带宽。在电子注电压为17.9 kV,电流0.35 A的条件下,能够在94 GHz实现450 W的功率输出,效率达7.18%,对应增益23.5 dB。固定电子注的电流与电压后,所设计的行波管在91~99 GHz频段内实现了超过200 W的输出功率,其3 dB带宽为91~98.5 GHz。并且调制后的粒子电压分布图进一步验证了模式分析的准确性。
  • Figure  1.  BTBFW model and electric field distribution

    Figure  2.  High frequency characteristics of BTBFW

    Figure  3.  H-plane input-output power synthesis structure transfer model

    Figure  4.  Transmission characteristics of the model in Fig. 3

    Figure  5.  Results of Amplification Characteristics Simulation

    Figure  6.  Electron voltage distribution during amplification

    Figure  7.  Output power and gain versus frequency

    Table  1.   Structure parameters of slow wave structure (mm)

    w n h p e l. sy
    1.8 0.40 0.60 1.12 0.16 1.68 0.36
    下载: 导出CSV
  • [1] Booske J H, Dobbs R J, Joye C D, et al. Vacuum electronic high power terahertz sources[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 54-75. doi: 10.1109/TTHZ.2011.2151610
    [2] Sherwin M. Terahertz power[J]. Nature, 2002, 420(6912): 131-133. doi: 10.1038/420131a
    [3] Himdi M, Aouial Y, Lafond O. Integrated slotted serpentine waveguide to enhance radiation properties and efficiency[J]. IEEE Access, 2022, 10: 51093-51099. doi: 10.1109/ACCESS.2022.3172952
    [4] Jaque Jiménez Á, Zamora G, Bonache J. Frequency-scanning leaky-wave slot antenna array based on serpentine waveguide with open stopband suppression[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23(1): 344-348. doi: 10.1109/LAWP.2023.3324063
    [5] Rouhi K, Marosi R, Mealy T, et al. Parametric modeling of serpentine waveguide traveling wave tubes[J]. IEEE Transactions on Plasma Science, 2024, 52(4): 1247-1263. doi: 10.1109/TPS.2024.3379944
    [6] Cook A M, Wright E L, Nguyen K T, et al. Demonstration of a W-band traveling-wave tube power amplifier with 10-GHz bandwidth[J]. IEEE Transactions on Electron Devices, 2021, 68(5): 2492-2498. doi: 10.1109/TED.2021.3068926
    [7] Cai Jun, Feng Jinjun, Hu Yinfu, et al. 10 GHz bandwidth 100 watt W-band folded waveguide pulsed TWTs[J]. IEEE Microwave and Wireless Components Letters, 2014, 24(9): 620-621. doi: 10.1109/LMWC.2014.2328891
    [8] Li Fei, Xiao Liu, Ma Tianjun, et al. W-Band 30W continuous wave wide band folded waveguide TWT[C]//2020 IEEE 21st International Conference on Vacuum Electronics (IVEC). 2020: 29-30.
    [9] Tian Yanyan, Wang Hexin, Shu Guoxiang, et al. Parallel arrangement folded double-ridge groove waveguide for high-power terahertz traveling-wave tube[J]. IEEE Transactions on Plasma Science, 2021, 49(11): 3519-3523. doi: 10.1109/TPS.2021.3118371
    [10] Duan Jingrui, Lu Zhigang, Gao Peng, et al. Quadruple folded groove-guide slow wave structure with power synthesis circuit for terahertz TWT[J]. IEEE Electron Device Letters, 2025, 46(2): 302-305. doi: 10.1109/LED.2024.3515646
    [11] Joye C D, Vlasov A N, Jaynes R, et al. Ka-band low-voltage multiple-beam mini-TWT[J]. IEEE Transactions on Electron Devices, 2023, 70(6): 2828-2833. doi: 10.1109/TED.2023.3239839
    [12] Eun Choi H, Choi W, Lee J, et al. Experimental investigation of a dual-beam traveling wave tube[J]. IEEE Transactions on Electron Devices, 2024, 71(7): 4336-4341. doi: 10.1109/TED.2024.3405398
    [13] Tian Yanyan, Yue Lingna, Xu Jin, et al. A novel slow-wave structure—folded rectangular groove waveguide for millimeter-wave TWT[J]. IEEE Transactions on Electron Devices, 2012, 59(2): 510-515. doi: 10.1109/TED.2011.2175929
    [14] Marosi R, Mealy T, Figotin A, et al. Three-way serpentine slow wave structures with stationary inflection point and enhanced interaction impedance[J]. IEEE Transactions on Plasma Science, 2022, 50(12): 4820-4833. doi: 10.1109/TPS.2022.3218040
    [15] Zhang Keqian, Li Dejie. Electromagnetic theory for microwaves and optoelectronics[M]. 2nd ed. Berlin, Heidelberg: Springer, 2008: 228-301.
    [16] Pierce J R. Traveling-wave tubes[M]. New York: Van Nostrand, 1950: 123-135.
    [17] Duan Jingrui, Lu Zhigang, Zhu Junwan, et al. A modified fold waveguide slow wave structure for W-band dual-beam TWT[J]. IEEE Transactions on Electron Devices, 2023, 70(6): 2786-2791. doi: 10.1109/TED.2023.3239459
    [18] Wang Huanyu, Wang Zhanliang, Liu Xing, et al. Simulation and experimental investigation on W-band back-to-back longitudinal serpentine groove slow wave structures[J]. IEEE Transactions on Electron Devices, 2025, 72(7): 3875-3880. doi: 10.1109/TED.2025.3572878
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  17
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-05
  • 修回日期:  2025-08-21
  • 录用日期:  2025-08-21
  • 网络出版日期:  2025-09-03

目录

    /

    返回文章
    返回