留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能同步辐射光源模拟束流信号发生器研制

周代全 张鸿 魏书军 曹建社 李宜林 许亮 高国栋

周代全, 张鸿, 魏书军, 等. 高能同步辐射光源模拟束流信号发生器研制[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250161
引用本文: 周代全, 张鸿, 魏书军, 等. 高能同步辐射光源模拟束流信号发生器研制[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250161
Zhou Daiquan, ZHANG Hong, Li Yilin, et al. Development of the BPM Signal Generator for the FOFB Test System of HEPS[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250161
Citation: Zhou Daiquan, ZHANG Hong, Li Yilin, et al. Development of the BPM Signal Generator for the FOFB Test System of HEPS[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250161

高能同步辐射光源模拟束流信号发生器研制

doi: 10.11884/HPLPB202537.250161
基金项目: 中国博士后科学基金第75批面上资助项目(2024M751760)
详细信息
    作者简介:

    周代全,zhoudq@ihep.ac.cn

    通讯作者:

    张 鸿,hongzhang@ihep.ac.cn

    魏书军,weisj@ihep.ac.cn

    曹建社,caojs@ihep.ac.cn

  • 中图分类号: TL506

Development of the BPM Signal Generator for the FOFB Test System of HEPS

  • 摘要: 高能同步辐射光源(HEPS)快轨道反馈控制系统(FOFB)用于HEPS储存环的轨道反馈控制。针对FOFB系统的调试需求研制了一套用于FOFB测试的束流信号模拟发生器,其包含四路信号且幅值独立可调的输出端口,可实现在实验室无束流条件下对真实束流探测器(BPM)信号的模拟输出。该信号发生器具有结构简单、造价低、重复稳定性高等优点,简化了FOFB系统的调试过程。研制工作围绕该脉冲信号发生器展开,详细介绍了其硬件电路设计方案并给出了测试结果。
  • 图  1  HEPS快轨道反馈控制系统功能框图。

    Figure  1.  The Functional block diagram of HEPS fast beam orbit feedback control system

    图  2  HEPS快轨道反馈控制系统的结构示意图。

    Figure  2.  The Schematic diagram of the structure of the HEPS fast beam orbit feedback control system

    图  3  信号发生器模拟的束流信号:(a)单次通过型模拟束流信号和触发信号;(b)和(c)触发频率220 kHz的触发信号和不同pattern结构的模拟束流信号。

    Figure  3.  Beam signals simulated by signal generators: (a) single-pass analog beam signals and trigger signals; (b) and (c) trigger signals with a trigger frequency of 220 kHz and analog beam signals with different pattern structures

    图  4  FOFB测试系统示意图。

    Figure  4.  The Schematic diagram of the FOFB test system

    图  5  信号发生器系统结构示意图。

    Figure  5.  The Schematic diagram of the signal generator system

    图  6  信号发生器性能测试实验平台示意图。

    Figure  6.  The Schematic diagram of the signal generator performance test experimental platform

    图  7  FPGA管脚输出的方波信号,频率250 MHz,占空比25%。

    Figure  7.  The square wave signal output by the FPGA is 250 MHz with a duty cycle of 25%

    图  8  FPGA管脚直接输出的触发信号和由6个pattern组合的方波信号。

    Figure  8.  The FPGA output a trigger signal directly and a square wave signal composed of 6 patterns

    图  9  信号发生器输出的单个模拟束流信号。

    Figure  9.  A single analog beam signal output by a signal generator

    图  10  衰减器测试结果。绿色线为触发信号,黄色为0 dB衰减,蓝色为15.5 dB衰减,紫色为4 dB衰减。

    Figure  10.  Attenuator test results. The green line is the trigger signal, the yellow is the 0 dB attenuation, the blue is the 15.5 dB attenuation, and the purple is the 4 dB attenuation

    图  11  不同衰减值下信号发生器四个通道输出信号的幅度。

    Figure  11.  The amplitude of the output signal of the four channels of the signal generator under different attenuation values

    图  12  信号发生器输出的220 kHz模拟束流信号,1个pattern包括10个模拟束流脉冲。

    Figure  12.  The signal generator outputs a 220 kHz analog beam signal, and 1 pattern includes 10 analog beam pulses

    图  13  信号发生器输出的220 kHz模拟束流信号,6个pattern,每个pattern有10个模拟束流脉冲。

    Figure  13.  The signal generator outputs a 220 kHz analog beam signal with 5 patterns, each pattern with 10 analog beam pulses

    图  14  信号发生器输出的模拟BEPCII逐圈束流信号,触发频率1.21 MHz。

    Figure  14.  Analog BEPCII turn-by-turn beam signal output from the signal generator with a trigger frequency of 1.21 MHz

    图  15  信号发生器输出220 kHz、脉冲间隔16 ns、脉冲数量20个的模拟束流信号时,BPM电子学计算的位置结果。

    Figure  15.  When the signal generator outputs an analog beam signal of 220 kHz, 16 ns bunch spacing and 20 pulses, the position result calculated by BPM electronics

    图  16  信号发生器输出220 kHz、脉冲间隔80 ns、脉冲数量20个的模拟束流信号时,BPM电子学计算的位置结果。

    Figure  16.  The position calculated by BPM electronics when the signal generator outputs an analog beam signal of 220 kHz, 80 ns bunch spacing, and 20 pulses

    表  1  ZX60-33LN-S+主要参数

    Table  1.   The main parameters of ZX60-33LN-S

    Bandwidth/
    MHz
    Noise/
    dB
    Output
    power/dBm
    OIP3/
    dBm
    Gain/dB Power supply
    voltage/V
    Input RF
    power/dBm
    Power
    dissipation/W
    50~3000 1.1(typ) Maximum
    +19 (typ)
    Maximum
    +35 (typ)
    24.67
    (100 MHz)
    22.93
    (400 MHz)
    21.44
    (600 MHz)
    18.71
    (1000 MHz)
    +5 Maximum
    +13
    0.44
    下载: 导出CSV

    表  2  XQY-PS4-DC/6-SE主要参数

    Table  2.   The main parameters of XQY-PS4-DC/6-SE

    Insertion loss/dB Input standing wave Output standing wave Isolation/dB Amplitude balance/dB Phase balance/(°) Impedance/Ω
    ≤14.0 Maximum
    1.25(Typ.1.11)
    Maximum
    1.25(Typ.1.10)
    Minimum 6.0 ±0.5 ±5 50
    下载: 导出CSV

    表  3  PE4302主要参数

    Table  3.   The main parameters of PE4302

    Power
    supply/V
    Bit number/
    bit
    Minimum step
    accuracy/dB
    Attenuation
    range/dB
    Maximum input
    power/dBm
    Input and output
    impedance/Ω
    External control
    level/V
    S21 insertion
    loss/dB
    +5~+12 6 0.5 0~+31.5 ≤+30 50 3.3 Better than -1.5(1GHz)
    下载: 导出CSV
  • [1] 姜晓明, 王九庆, 秦庆, 等. 中国高能同步辐射光源及其验证装置工程[J]. 中国科学: 物理学 力学 天文学, 2014, 44(10): 1075-1094

    Jiang Xiaoming, Wang Jiuqing, Qin Qing, et al. Chinese high energy photon source and the test facility[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2014, 44(10): 1075-1094
    [2] Jiao Yi, Xu Gang, Cui Xiaohao, et al. The HEPS project[J]. Journal of Synchrotron Radiation, 2018, 25(6): 1611-1618. doi: 10.1107/S1600577518012110
    [3] 焦毅, 潘卫民. 高能同步辐射光源[J]. 强激光与粒子束, 2022, 34: 104002 doi: 10.11884/HPLPB202234.220080

    Jiao Yi, Pan Weimin. High energy photon source[J]. High Power Laser and Particle Beams, 2022, 34: 104002 doi: 10.11884/HPLPB202234.220080
    [4] Uzun I S, Bartolini R, Rehm G, et al. Initial design of the fast orbit feedback system for diamond light source[C]//Proceedings of the 10th ICALEPCS International Conferences on Accelerator and Large Experimental Physics Control Systems. 2005: PO2.030-2.
    [5] Uzun I S. Diamond light source fast orbit feedback communication controller specification and design[R]. Diamond Internal Report, 2009.
    [6] Olmos A, Moldes J, Blanch S, et al. First steps towards a fast orbit feedback at ALBA[C]//Proceedings of IBIC2013. 2013: 727-730.
    [7] Olmos A, Moldes J, Petrocelli R, et al. Commissioning of the alba fast orbit feedback system[C]//Proceedings of IBIC2014. 2014: 691-695.
    [8] Kongtawong S, Yang Xi, Ha K, et al. NSLS-II FOFB performance improvement in 2019[R]. Upton: Brookhaven National Laboratory, 2019.
    [9] 唐旭辉, 何俊, 岳军会, 等. 束流位置探测器自动标定系统研制[J]. 核技术, 2022, 45: 020102 doi: 10.11889/j.0253-3219.2022.hjs.45.020102

    Tang Xuhui, He Jun, Yue Junhui, et al. Development of an automatic calibration system for beam position monitor[J]. Nuclear Techniques, 2022, 45: 020102 doi: 10.11889/j.0253-3219.2022.hjs.45.020102
    [10] 王贵诚, 王筠华, 蒋道满, 等. BPM定标系统及其应用[J]. 核技术, 2003, 26(4): 254-256 doi: 10.3321/j.issn:0253-3219.2003.04.002

    Wang Guicheng, Wang Junhua, Jiang Daoman, et al. A BPM calibration system and its application[J]. Nuclear Techniques, 2003, 26(4): 254-256 doi: 10.3321/j.issn:0253-3219.2003.04.002
    [11] 李勤, 何小中, 蒋薇, 等. 强流脉冲束流位置探测器标定装置物理设计[J]. 强激光与粒子束, 2023, 35: 034002 doi: 10.11884/HPLPB202335.220224

    Li Qin, He Xiaozhong, Jiang Wei, et al. Physical design of calibrated device for intense pulse electron beam position monitor[J]. High Power Laser and Particle Beams, 2023, 35: 034002 doi: 10.11884/HPLPB202335.220224
    [12] 王道远. HEPS快速轨道反馈系统关键技术研究[D]. 北京: 中国科学院高能物理研究所, 2023

    Wang Daoyuan. Research on key technologies of HEPS fast orbital feedback system[D]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2023
    [13] 黄玺洋, 魏源源, 许海生. HEPS轨道反馈物理需求[R]. 北京: 中国科学院高能物理研究所, 2023

    Huang Xiyang, Wei Yuanyuan, Xu Haisheng. Physical requirements for HEPS orbital feedback[R]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2023
    [14] 高国栋, 刘鹏, 龙锋利, 等. HEPS快速轨道反馈系统网络拓扑结构的设计与实现[J]. 核技术, 2023, 46: 050102 doi: 10.11889/j.0253-3219.2023.hjs.46.050102

    Gao Guodong, Liu Peng, Long Fengli, et al. Design and implementation of network topology for HEPS fast orbit feedback system[J]. Nuclear Techniques, 2023, 46: 050102 doi: 10.11889/j.0253-3219.2023.hjs.46.050102
    [15] 高国栋. 高能同步辐射光源快速轨道反馈系统的研究[D]. 北京: 中国科学院高能物理研究所, 2024

    Gao Guodong. Research on fast orbit feedback system for high-energy synchrotron radiation light sources[D]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2024
    [16] 刘佳阳, 麻惠洲, 杜垚垚, 等. 单次通过型束流位置探测器的束流位置测量方法[J]. 强激光与粒子束, 2023, 35: 124008 doi: 10.11884/HPLPB202335.230264

    Liu Jiayang, Ma Huizhou, Du Yaoyao, et al. Measurement method for beam position of single pass beam position monitor[J]. High Power Laser and Particle Beams, 2023, 35: 124008 doi: 10.11884/HPLPB202335.230264
    [17] 叶强, 张醒儿, 随艳峰, 等. 数字BPM数字采样电子学研制[J]. 核电子学与探测技术, 2020, 40(6): 855-860 doi: 10.3969/j.issn.0258-0934.2020.06.001

    Ye Qiang, Zhang Xing’er, Sui Yanfeng, et al. The development of digital BPM digital acquisition electronics[J]. Nuclear Electronics & Detection Technology, 2020, 40(6): 855-860 doi: 10.3969/j.issn.0258-0934.2020.06.001
    [18] 随艳峰, 杜垚垚, 叶强, 等. 基于BEPCⅡ数字束流位置测量系统电子学系统的设计与实现[J]. 原子能科学技术, 2020, 54(1): 172-178 doi: 10.7538/yzk.2019.youxian.0044

    Sui Yanfeng, Du Yaoyao, Ye Qiang, et al. Development of digital beam position monitor electronics system based on BEPCⅡ[J]. Atomic Energy Science and Technology, 2020, 54(1): 172-178 doi: 10.7538/yzk.2019.youxian.0044
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  17
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-06
  • 修回日期:  2025-08-20
  • 录用日期:  2025-08-12
  • 网络出版日期:  2025-09-06

目录

    /

    返回文章
    返回