留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

12.5 kW霍尔推力器热设计措施的有效性分析研究*

孙明明 孔繁庭 杨俊泰 李沛 王尚民

孙明明, 孔繁庭, 杨俊泰, 等. 12.5 kW霍尔推力器热设计措施的有效性分析研究*[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250172
引用本文: 孙明明, 孔繁庭, 杨俊泰, 等. 12.5 kW霍尔推力器热设计措施的有效性分析研究*[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250172
Sun Mingming, Kong Fanting, Yang Juntai, et al. Effectiveness analysis of thermal design methods for a 12.5 kW Hall thruster[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250172
Citation: Sun Mingming, Kong Fanting, Yang Juntai, et al. Effectiveness analysis of thermal design methods for a 12.5 kW Hall thruster[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250172

12.5 kW霍尔推力器热设计措施的有效性分析研究*

doi: 10.11884/HPLPB202537.250172
基金项目: 兰州市青年科技人才创新项目(2023-QN-5)
详细信息
    作者简介:

    孙明明,smmhappy@163.com

    通讯作者:

    孔繁庭,1345088948@qq.com

  • 中图分类号: V439.4

Effectiveness analysis of thermal design methods for a 12.5 kW Hall thruster

  • 摘要: 为了对取消散热板后的12.5 kW霍尔推力器的热设计优化提供工程指引,本文计算了推力器热耗并校准了热模型,之后采用有限元仿真结合热平衡试验验证对12.5 kW霍尔推力器的不同热设计措施的有效性进行了分析。结果显示,在取消散热板后,推力器各部件平均温升达到50~150 ℃,在考虑推力器主要的热量传递路径后,提出6种热设计措施并分别进行仿真分析。分析结果表明,措施4和措施6,即阻断空心阴极与内线圈的辐射热交换以及提高导磁底座外磁屏和外线圈套筒的发射系数,对控制内线圈及导磁底座的温升具有显著影响。其次,基于措施1即阻断内线圈和导磁底座之间的热传导,在二者间增加了厚度为5 mm隔热垫并开展了热平衡试验验证。结果显示,各部件的仿真值与实测值的比对误差均小于10%,而导磁底座和外壳处的温度比对误差最大,这是由于试验中仍存在轴向热传导所导致。比对结果验证了针对措施1所开展仿真分析的准确性,同时也间接证明了措施4组合措施6的降温效果有效性。
  • 图  1  兰州空间技术物理研究所研制的12.5 kW高功率霍尔推力器

    Figure  1.  The 12.5 kW Hall thruster developed by LIP (Lanzhou Institute of Physics)

    图  2  初始结构推力器关键部件的温度仿真结果

    Figure  2.  Temperature simulation results of the key components of the original thruster structure

    图  3  不同热设计措施下的推力器温度仿真结果(单位:℃)

    Figure  3.  Temperature simulation results of the thruster under different thermal design method (unit: ℃)

    图  4  结合措施4和措施6后的温度分析结果(单位:℃)

    Figure  4.  Temperature simulation results under method 4 combined with method 6 (unit: ℃)

    图  5  传感器的安装以及推力器在真空设备内的稳定运行

    Figure  5.  Installation of the sensors and steady operation of the thruster in the vacuum facility

    表  1  12.5kW额定工况下的热耗设置

    Table  1.   Setting of heat loss under 12.5kW condition

    heat loss applied region heat loss /W
    inner wall of the channel 900
    outer wall of the channel 1110
    anode surface 549
    inner coil 71.3
    outer coil 120.8
    cathode keeper 9.24
    total heat loss 2760.34
    下载: 导出CSV

    表  2  推力器关键部件表面的发射系数设置

    Table  2.   Setting of emission coefficient on the surface of key components

    components material emissivity radiation relationship
    upper magnetic pole DT-4C 0.45 surface-space
    outer coil DT-4C 0.45 surface-space
    magnetic base TC-4 0.50 surface-space
    diffusion plate 2A12 0.85 surface-space
    thruster mounting base 2A12 0.75 surface-space
    inner and outer wall of channel BN 0.80 surface-sueface
    cathode tube-heat shield Ta 0.40 surface-sueface
    heat shield-keeper Ta 0.40 surface-sueface
    下载: 导出CSV

    表  3  初始结构下霍尔推力器的热仿真以及实测结果比对(单位:℃)

    Table  3.   Comparison of the simulations and experiments of original structure of the Hall thruster (unit: ℃)

    components measurements (with diffusion plate) simulations (with diffusion plate) simulations (without diffusion plate)
    upper magnetic pole 192 188~194 355
    inner wrapping post 318 313~319 365
    magnetic base 208 205~212 316
    diffusion plate 157 160~166
    thruster base 159 165~169 233
    interior stay 304 301~307 383
    下载: 导出CSV

    表  4  不同热设计措施下核心部件的温度仿真结果(单位:℃)

    Table  4.   Temperature simulation results of key components under different thermal design method (unit: ℃)

    components original method 1 method 2 method 3 method 4 method 5 method 6
    inner coil 365 371 357 270 238 359 331
    discharge channel 581 527 535 526 524 541 529
    magnetic base 316 268 279 265 261 320 303
    thruster base 233 143 138 158 208 202 171
    interior stay 383 296 375 293 290 344 334
    anode 492 455 448 453 451 489 486
    下载: 导出CSV

    表  5  结合措施4和措施6后的核心部件温度分布(单位:℃)

    Table  5.   Temperature distribution of key components under method 4 combined with method 6 (unit: ℃)

    components with diffusion plate without diffusion plate method 4 method 6 method (4+6)
    inner coil 318 365 238 331 295
    magnetic base 208 316 261 303 213
    thruster base 159 233 208 171 167
    interior stay 304 383 290 334 311
    aniode 412 492 451 486 447
    下载: 导出CSV

    表  6  基于热设计措施1的各关键部件的温度比对(单位:℃)

    Table  6.   Temperature comparison of key components under thermal design method 1 (unit: ℃)

    components simulations measurements errors
    inner coil 371 353 5.1%
    discharge channel 527 512 2.9%
    magnetic base 268 289 7.3%
    thruster base 143 157 8.9%
    interior stay 296 292 1.4%
    aniode 455 436 4.4%
    下载: 导出CSV
  • [1] 康小录, 张岩, 刘佳, 等. 大功率霍尔电推进研究现状与关键技术[J]. 推进技术, 2019, 40(1):1-11

    Kang Xiaolu, Zhang Yan, Liu Jia, et al. Research status and key technologies of high-power hall electric propulsion[J]. Journal of Propulsion Technology, 2019, 40(1): 1-11
    [2] 耿海, 吴辰宸, 孙新锋, 等. 高功率空间电推进技术发展研究[J]. 真空与低温, 2022, 28(1):14-25

    Geng Hai, Wu Chenchen, Sun Xinfeng, et al. The high power space electric propulsion technology[J]. Vacuum and Cryogenics, 2022, 28(1): 14-25
    [3] Casaregola C, Pergola P, Ruggiero A. Future scenarios for space transportation and exploration based on high power electric propulsion technologies[C]//Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2011.
    [4] Andreussi T, Giannetti V, Leporini A, et al. Influence of the magnetic field configuration on the plasma flow in hall thrusters[J]. Plasma Physics and Controlled Fusion, 2018, 60: 014015. doi: 10.1088/1361-6587/aa8c4d
    [5] Dorf L, Raitses Y, Fisch NJ. Effect of magnetic field profile on the anode fall in a hall-effect thruster discharge[J]. Physics of Plasmas, 2006, 13: 057104. doi: 10.1063/1.2174825
    [6] Archipov A, Krochak Z, Maslennikov Y. Thermal design of the electric propulsion system components - numerical analysis and testing at Fakel[C]//Proceedings of the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 1998.
    [7] 陈笃华, 王平阳, 王尚, 等. 50kW级高功率霍尔推力器放电通道数值模拟研究[J]. 上海航天(中英文), 2021, 38(6):78-84

    Chen Duhua, Wang Pingyang, Wang Shang, et al. Numerical simulation of the discharge channel of a 50 kW high-power hall thruster[J]. Aerospace Shanghai (Chinese & English), 2021, 38(6): 78-84
    [8] Hani K, Thomas H, Wen S H, et al. Performance and thermal characterization of a 20 kW class long life Hall thruster[R]. IEPC-2013-136.
    [9] Kamhawi H, Liu T M, Benavides G F, et al. Performance, stability, and thermal characterization of a sub-kilowatt Hall thruster[C]//Proceedings of the 36th International Electric Propulsion Conference. 2019: 1-20.
    [10] Mao W, Shen Y, Hu Y L, et al. Investigation of thermal characteristics in a 1.35 kW magnetic focus type Hall thruster (HEP-100MF)[R]. IEPC-2015-214.
    [11] Myers J L, Kamhaw H, Yim J, et al. Hall thruster thermal modeling and test data correlation[C]//Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference. 2016.
    [12] 赵震, 程佳兵, 康小录. 温度对磁屏蔽霍尔推力器磁场构型的影响研究[J]. 中国空间科学技术, 2020, 40(4):29-37

    Zhao Zhen, Cheng Jiabing, Kang Xiaolu. Effect of temperature on magnetic field configuration of magnetically shielded Hall thruster[J]. Chinese Space Science and Technology, 2020, 40(4): 29-37
    [13] 苗鹏, 于博, 康小录, 等. 嵌套霍尔推力器的热优化策略研究[J]. 推进技术, 2024, 45:2304031

    Miao Peng, Yu Bo, Kang Xiaolu, et al. An investigation of thermal optimization strategies in nested Hall thrusters[J]. Journal of Propulsion Technology, 2024, 45: 2304031
    [14] 刘星宇, 李鸿, 毛威, 等. 霍尔推力器能量损失系统性评价方法[J]. 推进技术, 2022, 43:200868

    Liu Xingyu, Li Hong, Mao Wei, et al. Systematic evaluation method for power loss of hall thruster[J]. Journal of Propulsion Technology, 2022, 43: 200868
    [15] 徐凡, 王磊, 丁永杰, 等. 永磁霍尔推力器性能退化及寿命评估研究[J]. 推进技术, 2023, 44:2212024

    Xu Fan, Wang Lei, Ding Yongjie, et al. Performance degradation and life assessment of permanent magnet hall thruster[J]. Journal of Propulsion Technology, 2023, 44: 2212024
    [16] 陈龙, 阚子晨, 杨叶慧, 等. 霍尔推力器磁屏蔽磁场设计及通道结构优化仿真研究[J]. 推进技术, 2023, 44:2208107

    Chen Long, Kan Zichen, Yang Yehui, et al. Simulation study on magnetic shielding field design and channel structure optimization of hall thruster[J]. Journal of Propulsion Technology, 2023, 44: 2208107
    [17] Ding Y J, Li H, Li P, et al. Effect of relative position between cathode and magnetic separatrix on the discharge characteristic of Hall thrusters[J]. Vacuum, 2018, 154: 167-173. doi: 10.1016/j.vacuum.2018.05.005
    [18] Hofer R R, Johnson L K, Goebel D M, et al. Effects of internally mounted cathodes on Hall thruster plume properties[J]. IEEE Transactions on Plasma Science, 2008, 36(5): 2004-2014. doi: 10.1109/TPS.2008.2000962
    [19] Goebel D, Katz I. JPL space science and technology series[M]//Goebel D M, Katz I. Fundamentals of Electric Propulsion: Ion and Hall Thrusters. Hoboken: John Wiley & Sons, Inc. , 2008: 357-363.
    [20] Sun M M, Geng H, Liu C, et al. Simulation and measurement of plume characteristics of a hall thruster with 12.5 kW[J]. Journal of Aerospace Technology and Management, 2025, 17: e1325. doi: 10.1590/jatm.v17.1373
    [21] 孙明明, 顾左, 郭宁, 等. 离子推力器空心阴极热特性模拟分析[J]. 强激光与粒子束, 2010, 22(5):1149-1152 doi: 10.3788/HPLPB20102205.1149

    Sun Mingming, Gu Zuo, Guo Ning, et al. Thermal analysis of hollow cathodes for ion thruster[J]. High Power Laser and Particle Beams, 2010, 22(5): 1149-1152 doi: 10.3788/HPLPB20102205.1149
    [22] 杜林颖, 于鸿彬, 王磊. 基于K型热电偶温度传感器的测温系统研究[J]. 现代电子技术, 2019, 42(14):36-40

    Du Linying, Yu Hongbin, Wang Lei. Research on temperature measurement system based on K-type thermocouple temperature sensor[J]. Modern Electronics Technique, 2019, 42(14): 36-40
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  11
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-13
  • 修回日期:  2025-08-15
  • 录用日期:  2025-08-04
  • 网络出版日期:  2025-08-26

目录

    /

    返回文章
    返回