留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甚高频光阴极微波电子枪调谐实验研究

贾燕庆 郑连敏 黄文会 唐传祥 杜应超

贾燕庆, 郑连敏, 黄文会, 等. 甚高频光阴极微波电子枪调谐实验研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250175
引用本文: 贾燕庆, 郑连敏, 黄文会, 等. 甚高频光阴极微波电子枪调谐实验研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250175
Jia Yanqing, Zheng Lianmin, Huang Wenhui, et al. Experimental study on the tuning of a very-high-frequency photocathode electron gun[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250175
Citation: Jia Yanqing, Zheng Lianmin, Huang Wenhui, et al. Experimental study on the tuning of a very-high-frequency photocathode electron gun[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250175

甚高频光阴极微波电子枪调谐实验研究

doi: 10.11884/HPLPB202537.250175
基金项目: 国家自然科学基金项目(12027902)
详细信息
    作者简介:

    贾燕庆,fedordjia@outlook.com

    通讯作者:

    杜应超,dych@mail.tsinghua.edu.cn

  • 中图分类号: G312

Experimental study on the tuning of a very-high-frequency photocathode electron gun

  • 摘要: 甚高频光阴极微波电子枪是一种工作于连续波模式的电子源,用于产生MHz级高重频、高品质的电子束,是高重频X射线自由电子激光、高重频超快电子衍射等科学装置的关键核心部件。在运行过程中,电子枪腔体谐振频率随着馈入功率及冷却水温度变化而变化,因此需要对电子枪频率进行实时测量并通过调谐器对腔体频率进行调整以保障腔体内微波场幅度和相位的稳定。基于LCR振荡电路模型,分析了腔体取样微波与入射微波的相位差与电子枪谐振频率的关系,采用了频率扫描、频率跟踪和主动调谐的电子枪腔体三步调谐方法,成功应用于清华大学甚高频电子枪调谐和微波幅度相位控制。通过该调谐方法,可以使电子枪在高功率运行时始终保持谐振状态。电子枪在满功率运行下腔体谐振频率偏差控制在94.2 Hz (RMS),腔体微波采样口的幅值稳定性达到0.0046% (RMS),锁相精度达到0.0023° (RMS),实现电子枪在满功率下长时间稳定运行。
  • 图  1  甚高频光阴极电子枪的LCR等效电路图

    Figure  1.  LCR Equivalent Circuit Diagram of a Very High Frequency Photocathode Electron Gun

    图  2  LLRF机箱系统结构

    Figure  2.  Structure of the LLRF Chasis

    图  3  甚高频电子枪测试平台LLRF机箱实物

    Figure  3.  LLRF cabinet of the VHF Gun Test Platform

    图  4  甚高频电子枪调谐系统架构

    Figure  4.  Structure of VHF tuning system

    图  5  电子枪幅值相位特性扫频曲线,其中蓝色实线为LLRF测量值,红色虚线为理论值

    Figure  5.  Sweep-frequency curve of the VHF gun’s amplitude-phase characteristics, where the blue solid line represents the LLRF measured values, and the red dashed line represents the theoretical values

    图  6  电子枪调谐频率跟踪过程

    Figure  6.  The frequency tracking process for tuning of VHF gun

    图  7  电子枪主动调谐后调谐器受力和微波取样探针与入射波相位差$ {\Delta \phi } $随时间的变化

    Figure  7.  The variation of the force on the tuner and the phase difference $ {\Delta \phi } $ between the RF probe and the incident wave over time after active tuning of the VHF gun

    图  8  电子枪主动调谐后24 h微波幅值稳定性测试

    Figure  8.  Microwave amplitude stability test in 24 h after active tuning

    图  9  电子枪主动调谐后24 h微波相位稳定性测试

    Figure  9.  Microwave phase stability test in 24 h after active tuning

    图  10  电子枪主动调谐后24 h谐振频率稳定性测试

    Figure  10.  Gun resonant frequency stability test in 24 h after active tuning

    图  11  电子枪主动调谐期间腔体温度稳定性

    Figure  11.  Stability of gun cavity temperature during active tuning

  • [1] Zhou F, Adolphsen C, Dowell D, et al. Overview of CW electron guns and LCLS-II RF gun performance[J]. Frontiers in Physics, 2023, 11: 1150809. doi: 10.3389/fphy.2023.1150809
    [2] Jiang Zenggong, Qian Houjun, Zhang Meng, et al. Design and status of SHINE injector[C]//Proceedings of the 15th International Particle Accelerator Conference. 2024: 164-166.
    [3] Filippetto D, Qian H. Design of a high-flux instrument for ultrafast electron diffraction and microscopy[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49: 104003. doi: 10.1088/0953-4075/49/10/104003
    [4] Zhou F, Adolphsen C, Benwell A, et al. Commissioning of the SLAC linac coherent light source II electron source[J]. Physical Review Accelerators and Beams, 2021, 24: 073401. doi: 10.1103/PhysRevAccelBeams.24.073401
    [5] Zheng Lianmin, Chen Han, Gao Bin, et al. Design, fabrication, and beam commissioning of a 216.667 MHz continuous-wave photocathode very-high-frequency electron gun[J]. Physical Review Accelerators and Beams, 2023, 26: 103402. doi: 10.1103/PhysRevAccelBeams.26.103402
    [6] Zheng Lianmin, Chen Han, Du Yingchao, et al. Design of a 217 MHz VHF gun at Tsinghua university[C]//Proceedings of the 10th International Particle Accelerator Conference. 2019.
    [7] Chen Han, Zheng Lianmin, Huang Pengwei, et al. Analysis of slice transverse emittance evolution in a very-high-frequency gun photoinjector[J]. Physical Review Accelerators and Beams, 2021, 24: 124402. doi: 10.1103/PhysRevAccelBeams.24.124402
    [8] Gao Bin, Zheng Lianmin, Chen Han, et al. Development of an L-band continuous-wave buncher at Tsinghua University[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024, 1059: 168852. doi: 10.1016/j.nima.2023.168852
    [9] Liu Kui, Li Lin, Wang Cheng, et al. Multi-port cavity model and low-level RF systems design for VHF gun[J]. Nuclear Science and Techniques, 2020, 31: 8. doi: 10.1007/s41365-019-0711-2
    [10] Huang G, Campbell K, Doolittle L, et al. LCLS-II Gun/Buncher LLRF system design[C]//Proceedings of the 9th International Particle Accelerator Conference. 2018.
    [11] Doolittle L, Huang G, Ratti A, et al. THE LCLS-II LLRF system[C]//Proceedings of IPAC2015. 2015.
    [12] Serrano C, Babel S, Bachimanchi R, et al. Design and implementation of the LLRF system for LCLS-II[C]//Proceedings of the 16th International Conference on Accelerator and Large Experimental Physics Control Systems. 2018.
    [13] Huang Gang, Babel S, Bachimanchi R, et al. High precision RF control for the LCLS-II[C]//Proceedings of the 2nd North American Particle Accelerator Conference. 2017.
    [14] Hovater C, Bachimanchi R, Seidman D, et al. Analog-centered LLRF system design for LCLS-II[C]//Proceedings of the LLRF15. 2015.
    [15] 张志刚, 杨文峰, 蒋鸿儒, 等. 硬X射线自由电子激光装置聚束器低电平控制研究[J]. 强激光与粒子束, 2025, 37: 094001

    Zhang Zhigang, Yang Wenfeng, Jiang Hongru, et al. Study on low-level control of buncher in hard X-ray free electron laser facility[J]. High Power Laser and Particle Beams, 2025, 37: 094001
    [16] 任天祺, 唐雷雷, 周泽然. 基于MTCA的HLS-II直线加速器低电平系统改造[J]. 强激光与粒子束, 2020, 32: 084006

    Ren Tianqi, Tang Leilei, Zhou Zeran. Upgrade of low level RF system based on Micro Telecom Computing Architecture (MTCA) for HLS-II LINAC[J]. High Power Laser and Particle Beams, 2020, 32: 084006
    [17] 唐兴海, 刘亚娟, 张俊强, 等. 基于MicroTCA的自动频率控制系统[J]. 核技术, 2016, 39: 070102

    Tang Xinghai, Liu Yajuan, Zhang Junqiang, et al. An automatic frequency control system based on MicroTCA[J]. Nuclear Techniques, 2016, 39: 070102
    [18] 张同宣, 赵玉彬, 尹成科, 等. 上海光源数字化低电平控制系统的硬件设计与实现[J]. 强激光与粒子束, 2008, 20(6): 1048-1052

    Zhang Tongxuan, Zhao Yubin, Yin Chengke, et al. Design and realization of digital low level RF system for SSRF[J]. High Power Laser and Particle Beams, 2008, 20(6): 1048-1052
    [19] Contributions from Chinese Labs/Universities. LLRF activities in Chinese labs[C]//Proceedings of the LLRF Workshop. 2022.
  • 加载中
图(11)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  14
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-17
  • 修回日期:  2025-10-10
  • 录用日期:  2025-09-24
  • 网络出版日期:  2025-10-23

目录

    /

    返回文章
    返回