Safety analysis of injector dump beam window for the electron beam test platform of S3FEL
-
摘要: 束流测试平台作为深圳中能高重复频率X射线自由电子激光(S3FEL)的先行启动项目,将用于攻克高重复频率自由电子激光中的多项重大关键技术。基于先前研究中提出的一种内置于废束桶的束窗方案,对其进行了辐射剂量分析,得到两侧墙与顶墙外30 cm处的辐射剂量符合国标要求,验证了该方案的辐射安全性。并基于束窗结构,对束窗运行时可能存在的异常工况包括束流偏心、束流缩束和冷却水流速降低工况进行热结构分析,结果表明束流偏心对束窗的温度、应力与变形影响不显著;束流缩束和冷却水流速降低均会引起温升、应力与变形的升高,但束流标准差缩束为原先值的百分比不能低于10%及冷却水流速不能低于0.2 m/s,否则将影响束窗的安全运行。明确了束窗安全运行的阈值,为束窗的安全运行提供了理论依据。Abstract:
Background The electron beam test platform, as the pre-research project of Shenzhen Superconducting Soft X-ray Free Electron Laser (S3FEL), will be used to overcome several major key technologies in high repetition frequency free electron laser.Purpose Based on the previously proposed beam window design integrated into the beam dump, this study aims to conduct the radiation safety analysis and the thermo-structural analyses under non-ideal conditions during operation.Methods The radiation dose at the beam window was calculated and analysed using the Monte Carlo method. To evaluate the robust of BWs during operation, the thermo-structural analyses was conducted using the finite element analysis method under non-ideal situations, including beam eccentricity, beam shrinkage, and reduced cooling water flow rate.Results The results show that the radiation dose at 30 cm outside the side walls and ceiling complies with national standards, verifying the radiation safety of the scheme. Besides, the results indicate that beam eccentricity has negligible effects on the temperature, stress, and deformation of the beam window. Both beam shrinkage and reduced cooling water flow rate lead to increased temperature, stress, and deformation.Conclusions However, the standard deviation of the beam shrinkage must not fall below 10% of its original value, and the cooling water flow rate must not be lower than 0.2 m/s; Otherwise, the safe operation of the beam window would be compromised. This paper clarifies the safety operation threshold for the beam window, providing a theoretical basis for its secure operation.-
Key words:
- free electron laser /
- high repetition frequency /
- beam window /
- safety
-
表 1 束窗材料及水的物性参数
Table 1. Physical parameters of water and beam window materials
material density/
(kg·m−3)melting
point/℃elastic
modulus/GPaPoisson’s
ratioyield
stress/MPathermal conductivity/
(W·m−1·K−1)thermal expansion
coefficient/℃−1316L 7980 1375 193 0.300 290 15 12.0×10−6 OFHC 8940 1083 115 0.343 340 391 17.7×10−6 H2O 1000 0 − − − 0.606 − -
[1] Motz H. Applications of the radiation from fast electron beams[J]. Journal of Applied Physics, 1951, 22(5): 527-535. doi: 10.1063/1.1700002 [2] Gonnella D, Aderhold S, Burrill A, et al. Industrialization of the nitrogen-doping preparation for SRF cavities for LCLS-II[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 883: 143-150. [3] Sinn H, Dommach M, Dickert B, et al. The SASE1 X-ray beam transport system[J]. Journal of Synchrotron Radiation, 2019, 26(3): 692-699. doi: 10.1107/S1600577519003461 [4] Tono K, Nango E, Sugahara M, et al. Diverse application platform for hard X-ray diffraction in SACLA (DAPHNIS): application to serial protein crystallography using an X-ray free-electron laser[J]. Journal of Synchrotron Radiation, 2015, 22(3): 532-537. doi: 10.1107/S1600577515004464 [5] 余永, 李钦明, 杨家岳, 等. 大连极紫外相干光源[J]. 中国激光, 2019, 46: 0100005 doi: 10.3788/CJL201946.0100005Yu Yong, Li Qinming, Yang Jiayue, et al. Dalian extreme ultraviolet coherent light source[J]. Chinese Journal of Lasers, 2019, 46: 0100005 doi: 10.3788/CJL201946.0100005 [6] Wang Jinwei, Liu Junnan, Jin Limin, et al. Numerical simulation of attenuation performance of the gas attenuator using argon as working medium of SHINE[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024, 1058: 168881. doi: 10.1016/j.nima.2023.168881 [7] Xu Zhongmin, Zhang Weiqing, Yang Chuan, et al. Shape optimization design of the offset mirror in FEL-1 beamline at S3FEL[J]. Scientific Reports, 2023, 13: 9653. doi: 10.1038/s41598-023-36645-9 [8] 张浩, 黄礼明, 赵峰, 等. 一种高重频废束桶束窗的设计及热结构分析[J]. 强激光与粒子束, 2023, 35: 034001 doi: 10.11884/HPLPB202335.220350Zhang Hao, Huang Liming, Zhao Feng, et al. Design and thermal structure analysis of a dump beam window for high repetition frequency[J]. High Power Laser and Particle Beams, 2023, 35: 034001 doi: 10.11884/HPLPB202335.220350 [9] 鄂得俊, 黄礼明, 刘昌奇, 等. 大连先进光源束流垃圾桶屏蔽设计及热工分析[J]. 强激光与粒子束, 2024, 36: 014003 doi: 10.11884/HPLPB202436.230286E Dejun, Huang Liming, Liu Changqi, et al. Dalian Advanced Light Source beam dump radiation shielding design and thermal analysis[J]. High Power Laser and Particle Beams, 2024, 36: 014003 doi: 10.11884/HPLPB202436.230286 [10] 聂小军, 刘磊, 康玲, 等. 一种废束站束窗结构设计与优化[J]. 强激光与粒子束, 2018, 30: 105105 doi: 10.11884/HPLPB201830.180057Nie Xiaojun, Liu Lei, Kang Ling, et al. Structure design and optimization of a dump beam window[J]. High Power Laser and Particle Beams, 2018, 30: 105105 doi: 10.11884/HPLPB201830.180057 [11] Wang Haijing, Liu Weibin, Qu Huamin, et al. Thermal analysis and optimization of proton beam window for the CSNS[J]. Chinese Physics C, 2013, 37(7): 077001. doi: 10.1088/1674-1137/37/7/077001 [12] 张浩, 赵峰, 林涵文, 等. S3FEL束流测试平台注入段废束桶束窗设计[J]. 强激光与粒子束, 2025, 37: 054001 doi: 10.11884/HPLPB202537.240365Zhang Hao, Zhao Feng, Lin Hanwen, et al. Design of injector dump beam window for the electron beam test platform of S3FEL[J]. High Power Laser and Particle Beams, 2025, 37: 054001 doi: 10.11884/HPLPB202537.240365 [13] 姜伯承, 张满洲, 李浩虎, 等. 上海光源储存环恒流注入束流安全性模拟[J]. 强激光与粒子束, 2013, 25(4): 985-988 doi: 10.3788/HPLPB20132504.0985Jiang Bocheng, Zhang Manzhou, Li Haohu, et al. Top-up safety simulation of injection beam for Shanghai Synchrotron Radiation Facility storage ring[J]. High Power Laser and Particle Beams, 2013, 25(4): 985-988 doi: 10.3788/HPLPB20132504.0985 [14] 张刚, 敬罕涛, 朱东辉, 等. CSNS简化版实验缪子源的辐射和屏蔽设计[J]. 核技术, 2021, 44: 090501 doi: 10.11889/j.0253-3219.2021.hjs.44.090501Zhang Gang, Jing Hantao, Zhu Donghui, et al. Radiation and shielding design on the simplified experimental muon source at CSNS[J]. Nuclear Techniques, 2021, 44: 090501 doi: 10.11889/j.0253-3219.2021.hjs.44.090501 [15] GB 18871-2002, 电离辐射防护与辐射源安全基本标准[S]GB 18871-2002, Basic STANDARDs for protection against ionizing radiation and for the safety of radiation sources [16] 张志良, 孙越强, 李永平, 等. 基于COMSOL的星载四极质谱仪仿真分析[J]. 真空科学与技术学报, 2022, 42(7): 517-524Zhang Zhiliang, Sun Yueqiang, LI Yongping, et al. Simulation and analysis of spaceborne quadrupole mass spectrometer based on COMSOL[J]. Chinese Journal of Vacuum Science and Technology, 2022, 42(7): 517-524 [17] 郭玖元, 邓永皓, 许巍, 等. 矩形通道局部变形堵塞对流传热实验研究[J]. 核技术, 2021, 44: 050602 doi: 10.11889/j.0253-3219.2021.hjs.44.050602Guo Jiuyuan, Deng Yonghao, Xu Wei, et al. Experimental study on convection heat transfer in rectangular channel with partial blockage[J]. Nuclear Techniques, 2021, 44: 050602 doi: 10.11889/j.0253-3219.2021.hjs.44.050602 [18] Notari L, Pasquali M, Carra F, et al. Materials adopted for particle beam windows in relevant experimental facilities[J]. Physical Review Accelerators and Beams, 2024, 27: 024801. doi: 10.1103/PhysRevAccelBeams.27.024801 -