留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

S3FEL束流测试平台注入段废束桶束窗安全性分析

张浩 黄礼明 林涵文 李磊 赵峰 常仁超 魏建平 朱潇潇 赵禹 陶凯 尉伟

张浩, 黄礼明, 林涵文, 等. S3FEL束流测试平台注入段废束桶束窗安全性分析[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250179
引用本文: 张浩, 黄礼明, 林涵文, 等. S3FEL束流测试平台注入段废束桶束窗安全性分析[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250179
Zhang Hao, Huang Liming, Lin Hanwen, et al. Safety analysis of injector dump beam window for the electron beam test platform of S3FEL[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250179
Citation: Zhang Hao, Huang Liming, Lin Hanwen, et al. Safety analysis of injector dump beam window for the electron beam test platform of S3FEL[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250179

S3FEL束流测试平台注入段废束桶束窗安全性分析

doi: 10.11884/HPLPB202537.250179
基金项目: 深圳市科技计划项目(JCYJ20220530140807017)
详细信息
    作者简介:

    张 浩,zhanghao@mail.iasf.ac.cn

    通讯作者:

    尉 伟,weiwei@mail.iasf.ac.cn

  • 中图分类号: TL503.1

Safety analysis of injector dump beam window for the electron beam test platform of S3FEL

  • 摘要: 束流测试平台作为深圳中能高重复频率X射线自由电子激光(S3FEL)的先行启动项目,将用于攻克高重复频率自由电子激光中的多项重大关键技术。基于先前研究中提出的一种内置于废束桶的束窗方案,对其进行了辐射剂量分析,得到两侧墙与顶墙外30 cm处的辐射剂量符合国标要求,验证了该方案的辐射安全性。并基于束窗结构,对束窗运行时可能存在的异常工况包括束流偏心、束流缩束和冷却水流速降低工况进行热结构分析,结果表明束流偏心对束窗的温度、应力与变形影响不显著;束流缩束和冷却水流速降低均会引起温升、应力与变形的升高,但束流标准差缩束为原先值的百分比不能低于10%及冷却水流速不能低于0.2 m/s,否则将影响束窗的安全运行。明确了束窗安全运行的阈值,为束窗的安全运行提供了理论依据。
  • 图  1  束窗结构

    Figure  1.  Structure of beam window

    图  2  束窗与废束桶的位置关系

    Figure  2.  Positional relationship between beam window and beam dump

    图  3  内置于废束桶的束窗建模与辐射剂量分析

    Figure  3.  Modeling and radiation dose analysis of the beam window built into the beam dump

    图  4  侧墙外和顶板外30cm处的剂量率

    Figure  4.  Dose rate of 30cm outside the side walls and the ceiling

    图  5  冷却水流速为1 m/s的束窗温度、应力和变形

    Figure  5.  Temperature, stress and deformation of beam window with cooling water flow rate of 1m/s

    图  6  不同偏心距离下的束窗温度、应力和变形分布

    Figure  6.  Temperature, stress and deformation distribution of beam window under different eccentric distance

    图  7  不同缩束比例下的束窗温度、应力和变形分布

    Figure  7.  Temperature, stress and deformation distribution of beam window under different eccentric distance

    图  8  不同水流速下的束窗温度、应力和变形分布

    Figure  8.  Temperature, stress and deformation distribution of beam window under different water flow

    表  1  束窗材料及水的物性参数

    Table  1.   Physical parameters of water and beam window materials

    material density/
    (kg·m−3)
    melting
    point/℃
    elastic
    modulus/GPa
    Poisson’s
    ratio
    yield
    stress/MPa
    thermal conductivity/
    (W·m−1·K−1)
    thermal expansion
    coefficient/℃−1
    316L 7980 1375 193 0.300 290 15 12.0×10−6
    OFHC 8940 1083 115 0.343 340 391 17.7×10−6
    H2O 1000 0 0.606
    下载: 导出CSV
  • [1] Motz H. Applications of the radiation from fast electron beams[J]. Journal of Applied Physics, 1951, 22(5): 527-535. doi: 10.1063/1.1700002
    [2] Gonnella D, Aderhold S, Burrill A, et al. Industrialization of the nitrogen-doping preparation for SRF cavities for LCLS-II[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 883: 143-150.
    [3] Sinn H, Dommach M, Dickert B, et al. The SASE1 X-ray beam transport system[J]. Journal of Synchrotron Radiation, 2019, 26(3): 692-699. doi: 10.1107/S1600577519003461
    [4] Tono K, Nango E, Sugahara M, et al. Diverse application platform for hard X-ray diffraction in SACLA (DAPHNIS): application to serial protein crystallography using an X-ray free-electron laser[J]. Journal of Synchrotron Radiation, 2015, 22(3): 532-537. doi: 10.1107/S1600577515004464
    [5] 余永, 李钦明, 杨家岳, 等. 大连极紫外相干光源[J]. 中国激光, 2019, 46: 0100005 doi: 10.3788/CJL201946.0100005

    Yu Yong, Li Qinming, Yang Jiayue, et al. Dalian extreme ultraviolet coherent light source[J]. Chinese Journal of Lasers, 2019, 46: 0100005 doi: 10.3788/CJL201946.0100005
    [6] Wang Jinwei, Liu Junnan, Jin Limin, et al. Numerical simulation of attenuation performance of the gas attenuator using argon as working medium of SHINE[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024, 1058: 168881. doi: 10.1016/j.nima.2023.168881
    [7] Xu Zhongmin, Zhang Weiqing, Yang Chuan, et al. Shape optimization design of the offset mirror in FEL-1 beamline at S3FEL[J]. Scientific Reports, 2023, 13: 9653. doi: 10.1038/s41598-023-36645-9
    [8] 张浩, 黄礼明, 赵峰, 等. 一种高重频废束桶束窗的设计及热结构分析[J]. 强激光与粒子束, 2023, 35: 034001 doi: 10.11884/HPLPB202335.220350

    Zhang Hao, Huang Liming, Zhao Feng, et al. Design and thermal structure analysis of a dump beam window for high repetition frequency[J]. High Power Laser and Particle Beams, 2023, 35: 034001 doi: 10.11884/HPLPB202335.220350
    [9] 鄂得俊, 黄礼明, 刘昌奇, 等. 大连先进光源束流垃圾桶屏蔽设计及热工分析[J]. 强激光与粒子束, 2024, 36: 014003 doi: 10.11884/HPLPB202436.230286

    E Dejun, Huang Liming, Liu Changqi, et al. Dalian Advanced Light Source beam dump radiation shielding design and thermal analysis[J]. High Power Laser and Particle Beams, 2024, 36: 014003 doi: 10.11884/HPLPB202436.230286
    [10] 聂小军, 刘磊, 康玲, 等. 一种废束站束窗结构设计与优化[J]. 强激光与粒子束, 2018, 30: 105105 doi: 10.11884/HPLPB201830.180057

    Nie Xiaojun, Liu Lei, Kang Ling, et al. Structure design and optimization of a dump beam window[J]. High Power Laser and Particle Beams, 2018, 30: 105105 doi: 10.11884/HPLPB201830.180057
    [11] Wang Haijing, Liu Weibin, Qu Huamin, et al. Thermal analysis and optimization of proton beam window for the CSNS[J]. Chinese Physics C, 2013, 37(7): 077001. doi: 10.1088/1674-1137/37/7/077001
    [12] 张浩, 赵峰, 林涵文, 等. S3FEL束流测试平台注入段废束桶束窗设计[J]. 强激光与粒子束, 2025, 37: 054001 doi: 10.11884/HPLPB202537.240365

    Zhang Hao, Zhao Feng, Lin Hanwen, et al. Design of injector dump beam window for the electron beam test platform of S3FEL[J]. High Power Laser and Particle Beams, 2025, 37: 054001 doi: 10.11884/HPLPB202537.240365
    [13] 姜伯承, 张满洲, 李浩虎, 等. 上海光源储存环恒流注入束流安全性模拟[J]. 强激光与粒子束, 2013, 25(4): 985-988 doi: 10.3788/HPLPB20132504.0985

    Jiang Bocheng, Zhang Manzhou, Li Haohu, et al. Top-up safety simulation of injection beam for Shanghai Synchrotron Radiation Facility storage ring[J]. High Power Laser and Particle Beams, 2013, 25(4): 985-988 doi: 10.3788/HPLPB20132504.0985
    [14] 张刚, 敬罕涛, 朱东辉, 等. CSNS简化版实验缪子源的辐射和屏蔽设计[J]. 核技术, 2021, 44: 090501 doi: 10.11889/j.0253-3219.2021.hjs.44.090501

    Zhang Gang, Jing Hantao, Zhu Donghui, et al. Radiation and shielding design on the simplified experimental muon source at CSNS[J]. Nuclear Techniques, 2021, 44: 090501 doi: 10.11889/j.0253-3219.2021.hjs.44.090501
    [15] GB 18871-2002, 电离辐射防护与辐射源安全基本标准[S]

    GB 18871-2002, Basic STANDARDs for protection against ionizing radiation and for the safety of radiation sources
    [16] 张志良, 孙越强, 李永平, 等. 基于COMSOL的星载四极质谱仪仿真分析[J]. 真空科学与技术学报, 2022, 42(7): 517-524

    Zhang Zhiliang, Sun Yueqiang, LI Yongping, et al. Simulation and analysis of spaceborne quadrupole mass spectrometer based on COMSOL[J]. Chinese Journal of Vacuum Science and Technology, 2022, 42(7): 517-524
    [17] 郭玖元, 邓永皓, 许巍, 等. 矩形通道局部变形堵塞对流传热实验研究[J]. 核技术, 2021, 44: 050602 doi: 10.11889/j.0253-3219.2021.hjs.44.050602

    Guo Jiuyuan, Deng Yonghao, Xu Wei, et al. Experimental study on convection heat transfer in rectangular channel with partial blockage[J]. Nuclear Techniques, 2021, 44: 050602 doi: 10.11889/j.0253-3219.2021.hjs.44.050602
    [18] Notari L, Pasquali M, Carra F, et al. Materials adopted for particle beam windows in relevant experimental facilities[J]. Physical Review Accelerators and Beams, 2024, 27: 024801. doi: 10.1103/PhysRevAccelBeams.27.024801
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  8
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-20
  • 修回日期:  2025-08-04
  • 录用日期:  2025-08-21
  • 网络出版日期:  2025-09-06

目录

    /

    返回文章
    返回