Study on the influence of electromagnetic parameters in large-orbit gyrotron electron gun in Ka-band
-
摘要: 介绍了大回旋电子枪的形成理论,分析了电子注在非理想会切磁场中的运动过程,并利用CST和E-gun对电子枪进行建模和仿真分析。研究了磁场、工作电压、电流对大回旋电子注质量、轨迹的影响,为Ka波段二次谐波大回旋电子注回旋行波管实验测试寻找最佳工作点提供指导,同时降低电子枪在实验过程中的损坏风险。研究表明,电子枪的工作电压过低时,速度比较大,出现电子回轰的现象,对阴极不利;同时,阴极的反向磁场过高时,电子回旋半径过大,会导致电子轰击在电子枪壁上损坏电子枪。最后对比了两种软件的计算结果,分析了各自的特点。Abstract:
Background Gyrotron traveling-wave tubes (gyro-TWTs), based on the electron cyclotron maser mechanism, are extensively utilized in critical military domains such as high-resolution millimeter-wave imaging radar, communications, and electronic countermeasures. Experimental observations indicate that when the cathode magnetic field exceeds a specific range, occur the electron beam bombardment of the tube wall.Purpose In order to reduce damage risks to the electron gun during experiments, provide guidance for identifying optimal operating points in experimental testing of Ka-band second-harmonic large-orbit gyrotron traveling wave tube (gyro-TWT).Methods This paper introduces the formation theory of large-orbit electron guns and analyzes the motion of electron beams in non-ideal CUSP magnetic fields. Using CST Particle Studio and E-gun software modeled and simulated the electron gun. The effects of magnetic fields, operating voltage, and beam current on the quality and trajectories of large-orbit electron beams were investigated.Results As the absolute value of the cathode magnetic field increases, both the velocity ratio and the Larmor radius increase, while the velocity spread decreases. With an increase in voltage, the velocity ratio decreases, and the Larmor radius drops to a minimum at a certain point before rising again. Variations in current have limited impact on the Larmor radius and the transverse-to-longitudinal velocity ratio; however, the electron-wave interaction efficiency reaches its maximum at the optimal operating current.Conclusions The study demonstrates that excessively low operating voltage leads to high transverse-to-longitudinal velocity ratios (α) and electron back-bombardment phenomena, which detrimentally affect the cathode. Therefore, within this voltage range (20–40 kV), the power supply voltage should be increased promptly. Conversely, excessively high reverse magnetic fields at the cathode result in oversized electron cyclotron radius, causing beam-wall bombardment and gun damage. To prevent electron beam bombardment of the tube wall, the cathode magnetic field should not exceed -85 Gs.-
Key words:
- electron gun /
- large-orbit electron beam /
- gyro-TWT /
- CUSP magnetic field /
- E-Gun /
- CST Particle Studio
-
表 1 电子枪工作参数
Table 1. Working parameters of the electron gun
U/kV I/A B0/Gs Rc/mm Bc/Gs $ \alpha $ $ {r}_{L} $/mm $ \mathrm{\delta }{\mathrm{v}}_{\perp } $/% 70 9 5100 11 −51 1.0 1.1 5 表 2 CST与E-gun仿真结果对比
Table 2. Comparison of CST and E-gun simulation results
simulator velocity ratio/% velocity spread/% electron cyclotron radius/mm E-gun 0.900 0.045 1.17 CST 1.038 0.073 1.18 -
[1] 郝保良, 魏义学, 陈永利, 等. 微波功率行波管器件的发展和应用[J]. 真空电子技术, 2018(1): 10-18Hao Baoliang, Wei Yixue, Chen Yongli, et al. Development and application of microwave power traveling wave tubes[J]. Vacuum Electronics, 2018(1): 10-18 [2] 杜朝海, 刘濮鲲, 薛谦忠, 等. 具有高稳定性的超高增益回旋行波管放大器[J]. 电子与信息学报, 2010, 32(7): 1717-1720Du Chaohai, Liu Pukun, Xue Qianzhong, et al. An ultra-high gain gyrotron traveling-wave amplifier with high stability[J]. Journal of Electronics & Information Technology, 2010, 32(7): 1717-1720 [3] 雷朝军, 王峨峰, 高东硕, 等. 大轨道电子光学系统优化设计和实验研究[C]//中国电子学会. 第二十二届真空电子学学术年会论文集. 2024: 283-287Lei Chaojun, Wang Efeng, Gao Dongshuo, et al. Optimized design and experimental study of large-orbit electro-optical system[C]//Chinese Society of Electronics. Proceedings of the 22nd Annual Conference on Vacuum Electronics. 2024: 283-287 [4] 牛婧杨, 王丽, 罗勇, 等. 回旋行波管电子枪阴极热分析[J]. 强激光与粒子束, 2013, 25(2): 446-450 doi: 10.3788/HPLPB20132502.0446Niu Jingyang, Wang Li, Luo Yong, et al. Thermal analysis of electron gun cathode for gyrotron travelling wave tube[J]. High Power Laser and Particle Beams, 2013, 25(2): 446-450 doi: 10.3788/HPLPB20132502.0446 [5] Schmidt G. Nonadiabatic particle motion in axialsymmetric fields[J]. Physics of Fluids, 1962, 5(8): 994-1002. doi: 10.1063/1.1706715 [6] 赵其祥, 雷朝军, 于新华, 等. 基于大回旋电子注的高次谐波回旋行波管[J]. 太赫兹科学与电子信息学报, 2024, 22(8): 835-841Zhao Qixiang, Lei Chaojun, Yu Xinhua, et al. High-order harmonic gyrotron traveling wave tubes with large orbit electron beams[J]. Journal of Terahertz Science and Electronic Information Technology, 2024, 22(8): 835-841 [7] Chen Xianfei, Huang Yu, Wang Pengbo, et al. Effect of electron beam properties on a second harmonic gyrotron[J]. IEEE Transactions on Electron Devices, 2022, 69(10): 5871-5878. doi: 10.1109/TED.2022.3201066 [8] Thumm M K A, Denisov G G, Sakamoto K, et al. High-power gyrotrons for electron cyclotron heating and current drive[J]. Nuclear Fusion, 2019, 59: 073001. doi: 10.1088/1741-4326/ab2005 [9] 杨锦涛, 王峨锋, 雷朝军, 等. 周期介质加载大轨道回旋行波管研究[J]. 现代电子技术, 2024, 47(8): 55-60Yang Jintao, Wang Efeng, Lei Chaojun, et al. Research on large-orbit gyro-TWT with periodic dielectric loading[J]. Modern Electronics Technique, 2024, 47(8): 55-60 [10] Litvak A G, Denisov G G, Glyavin M Y. Russian gyrotrons: achievements and trends[J]. IEEE Journal of Microwaves, 2021, 1(1): 260-268. doi: 10.1109/JMW.2020.3030917 [11] 王华军, 李宏福, 周晓岚. 单阳极磁控注入电子枪的设计[J]. 强激光与粒子束, 2000, 12(3): 331-334Wang Huajun, Li Hongfu, Zhou Xiaolan. Design of a single anode magnetron injection electronic gun[J]. Intense Laser and Particle Beam, 2000, 12(3): 331-334 [12] 殷瑞剑, 刘濮鲲. 3mm回旋行波放大器单阳极磁控注入式电子枪的设计[J]. 电子与信息学报, 2008, 30(6): 1507-1510Yin Ruijian, Liu Pukun. Design of a single-anode magnetron-injected-gun for the 3mm GYRO-TWT amplifiers[J]. Journal of Electronics & Information Technology, 2008, 30(6): 1507-1510 [13] 唐勇, 罗勇, 徐勇. Ka 波段螺纹波导回旋行波管大回旋电子枪的研究与设计[J]. 真空科学与技术学报, 2014, 34(12): 1329-1335Tang Yong, Luo Yong, Xu Yong. Design of CUSP gun for Ka-band helical waveguide gyro-traveling wave tube[J]. Chinese Journal of Vacuum Science and Technology, 2014, 34(12): 1329-1335 [14] 武新慧, 李家胤, 赵晓云, 等. 一种新型缓变倒向场大回旋电子枪[J]. 物理学报, 2011, 60: 080701 doi: 10.7498/aps.60.080701Wu Xinhui, Li Jiayin, Zhao Xiaoyun, et al. A novel large-orbit electron gun with gradually-changing reversal magnetic field[J]. Acta Physica Sinica, 2011, 60: 080701 doi: 10.7498/aps.60.080701 [15] Sabchevski S, Idehara T, Glyavin M, et al. Design of a large orbit gyrotron with a permanent magnet system[J]. Vacuum, 2001, 62(2/3): 133-142. [16] Louksha O I, Sominski G G, Arkhipov A V, et al. Gyrotron research at SPbPU: diagnostics and quality improvement of electron beam[J]. IEEE Transactions on Plasma Science, 2016, 44(8): 1310-1319. doi: 10.1109/TPS.2016.2590143 -
下载: