留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
温家星, 郭航, 吴思辛, 等. 激光驱动X射线源实现金属激光增材制造原位表征[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250191
引用本文: 温家星, 郭航, 吴思辛, 等. 激光驱动X射线源实现金属激光增材制造原位表征[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250191
Wen Jiaxing¹, Guo Hang, Wu Sixin¹, et al. In-situ characterization of metal laser additive manufacturing using a laser-driven X-ray source[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250191
Citation: Wen Jiaxing¹, Guo Hang, Wu Sixin¹, et al. In-situ characterization of metal laser additive manufacturing using a laser-driven X-ray source[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250191

激光驱动X射线源实现金属激光增材制造原位表征

doi: 10.11884/HPLPB202537.250191
基金项目: 基础加强重点项目
详细信息
    作者简介:

    温家星,wenjx13@tsinghua.org.cn

    通讯作者:

    赵宗清,zhaozongqing99@caep.cn

  • 中图分类号: O539

In-situ characterization of metal laser additive manufacturing using a laser-driven X-ray source

  • 摘要: 金属激光增材制造中的孔洞缺陷通常起源于熔池内部,并呈现出微观且高度动态的演化特性。采用高时空分辨的X射线透视成像技术,可对缺陷的产生与演化过程进行原位观测,对于揭示缺陷形成机理和优化工艺参数具有重要意义。本研究基于超强超短脉冲激光驱动的Betatron辐射源,发展了面向金属激光增材制造的高时空分辨X射线透视成像技术,并开展了不同工艺参数下微熔池的原位表征研究。结果表明,利用Betatron辐射源可实现对百微米厚度金属样品中熔池及匙孔动态结构的透视成像,空间分辨率达到4 μm。该研究为激光驱动X射线辐射源在金属激光增材制造中缺陷形成机理及工艺优化方面的应用奠定了重要基础。
  • 图  1  用于金属激光增材制造原位表征研究的激光驱动X射线源实验装置

    Figure  1.  Experimental setup for in-situ characterization of metal laser AM using a laser-driven X-ray source

    图  2  基于激光驱动X射线源获取的金属激光增材制造熔池匙孔动态图像

    Figure  2.  Dynamic imaging of melt pool and keyhole in metal laser AM using a laser-driven X-ray source

    表  1  不同加工参数下的熔池匙孔特征实验结果

    Table  1.   Experimental results of keyhole characteristics in melt pools under different processing parameters

    No. laser power/W scan speed/(mm/s) keyhole width/μm keyhole depth/μm
    P1 450 600 87.4 267.8
    P2 450 300 133.9 582.7
    P3 275 600 103.9 203.5
    P4 250 600 68.0 116.3
    下载: 导出CSV
  • [1] Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. International Materials Reviews, 2013, 57(3): 133-164.
    [2] Vafadar A , Guzzomi F, Rassau A, et al. Advances in metal additive manufacturing: a review of common processes, industrial applications, and current challenges[J]. Applied Sciences, 2021, 11(3): 1213.
    [3] King W E, Anderson A T, Ferencz R M, et al. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges[J]. Applied Physics Reviews, 2015, 2(4): 44-6270.
    [4] Du C, Zhao Y , Jiang J, et al. Pore defects in laser powder bed fusion: formation mechanism, control method, and perspectives[J]. Journal of Alloys and Compounds, 2023, 944(000): 31.
    [5] Polonsky A T, Pollock T M. Closing the science gap in 3D metal printing[J]. Science, 2020, 368(6491): 583-584. doi: 10.1126/science.abb4938
    [6] Cunningham R, Zhao C, Parab N, et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging[J]. Science., 2019, 363(6429): 849-852. doi: 10.1126/science.aav4687
    [7] Corde S, Ta Phuoc K, Lambert G, et al. Femtosecond x rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1): 1-48. doi: 10.1103/RevModPhys.85.1
    [8] Zhang H, Deng Z G, Jiang H, et al. High-brightness betatron X-ray source driven by the SULF-1 PW laser[J]. High Power Laser Science and Engineering, 2025, 13: e31. doi: 10.1017/hpl.2025.17
    [9] Zhao C, Shi B, Chen S, et al. Laser melting modes in metal powder bed fusion additive manufacturing[J]. Reviews of Modern Physics, 2022, 94: 045002. doi: 10.1103/RevModPhys.94.045002
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-15
  • 修回日期:  2025-07-08
  • 录用日期:  2025-07-02
  • 网络出版日期:  2025-07-11

目录

    /

    返回文章
    返回