留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多环燃料共振计算方法研究及验证

曹璐 刘宙宇 王立鹏 姜夺玉 胡田亮 郭树伟 黄海龙 曹良志

曹璐, 刘宙宇, 王立鹏, 等. 多环燃料共振计算方法研究及验证[J]. 强激光与粒子束, 2025, 37: 106012. doi: 10.11884/HPLPB202537.250193
引用本文: 曹璐, 刘宙宇, 王立鹏, 等. 多环燃料共振计算方法研究及验证[J]. 强激光与粒子束, 2025, 37: 106012. doi: 10.11884/HPLPB202537.250193
Cao Lu, Liu Zhouyu, Wang Lipeng, et al. Research and verification on calculation method of multi-ring fuel resonance[J]. High Power Laser and Particle Beams, 2025, 37: 106012. doi: 10.11884/HPLPB202537.250193
Citation: Cao Lu, Liu Zhouyu, Wang Lipeng, et al. Research and verification on calculation method of multi-ring fuel resonance[J]. High Power Laser and Particle Beams, 2025, 37: 106012. doi: 10.11884/HPLPB202537.250193

多环燃料共振计算方法研究及验证

doi: 10.11884/HPLPB202537.250193
基金项目: 国家自然科学基金项目(12275219,12205237)
详细信息
    作者简介:

    曹 璐,caolu@nint.ac.cn

    通讯作者:

    刘宙宇,liuzhouyu@xjtu.edn.cn

  • 中图分类号: TL324

Research and verification on calculation method of multi-ring fuel resonance

  • 摘要: 针对多环燃料精确共振计算的难题,提出并建立了基于全局局部耦合的多环燃料共振计算方法,其中局部计算中采用超细群方法求解共振核素有效自屏截面。采用多环燃料组件问题对该共振计算方法的精度、效率进行了评估,并进一步将该方法应用于高通量工程试验堆二维和三维全堆芯问题分析中。结果表明:基于全局局部耦合的多环燃料共振计算方法在精度和效率上都比传统子群方法更好;采用全局局部耦合的多环燃料共振计算方法模拟全堆芯问题中,特征值、功率分布均与参考解吻合较好。
  • 图  1  多环燃料全局局部耦合分析流程

    Figure  1.  Global-local coupling analysis process of multi-ring fuel

    图  2  多环燃料黑体处理过程(红色代表燃料,灰色代表包壳,白色代表慢化剂)

    Figure  2.  Black-body treatment of multi-ring fuel (red area represents the fuel region, gray area represents the cladding region, and white area represents the moderator region.)

    图  3  多环燃料等效一维问题搜索

    Figure  3.  Search process of an equivalent one-dimensional model for multi-ring fuel

    图  4  多环燃料一维求解模型的建立

    Figure  4.  Establishment of a one-dimensional solving model for multi-ring fuel

    图  5  其他几何燃料问题示意图

    Figure  5.  Schematic diagram of other geometric fuel issues

    图  6  多环燃料栅元问题几何及网格图

    Figure  6.  Geometry and mesh of multi-ring fuel cell problem

    图  7  第1环燃料235U和238U所有共振能群微观吸收截面及相对偏差计算结果

    Figure  7.  All resonance energy group self-shielding cross-sections and biases of 235U and 238U for the No. 1 ring fuel

    图  9  第6环燃料235U和238U所有共振能群微观吸收截面及相对偏差计算结果

    Figure  9.  All resonance energy group self-shielding cross-sections and biases of 235U and 238U for the No. 6 ring fuel

    图  8  第4环燃料235U和238U所有共振能群微观吸收截面及相对偏差计算结果

    Figure  8.  All resonance energy group self-shielding cross-sections and biases of 235U and 238U for the No. 4 ring fuel

    图  10  不同方案堆芯布置NECP-X程序建模图

    Figure  10.  Core layout geometry model for different schemes by NECP-X

    图  11  不同组件NECP-X程序建模图

    Figure  11.  Assembly geometry models by NECP-X

    图  12  高通量工程试验堆堆芯布置方案1二维全堆归一化组件功率及偏差分布图

    Figure  12.  Normalized assembly power and bias distribution of HFETR two-dimensional core layout scheme 1

    图  14  高通量工程试验堆堆芯布置方案3二维全堆归一化组件功率及偏差分布图

    Figure  14.  Normalized assembly power and bias distribution of HFETR two-dimensional core layout scheme 3

    图  13  高通量工程试验堆堆芯布置方案2二维全堆归一化组件功率及偏差分布图

    Figure  13.  Normalized assembly power and bias distribution of HFETR two-dimensional core layout scheme 2

    图  15  方案4堆芯径向布置NECP-X程序建模图

    Figure  15.  Core layout geometry model for scheme 4 by NECP-X

    图  16  高通量工程试验堆堆芯布置方案1三维全堆径向积分归一化组件功率及偏差分布图

    Figure  16.  Radial integrated normalized assembly power and bias distribution of HFETR three-dimensional core layout scheme 1

    图  17  高通量工程试验堆堆芯布置方案4三维全堆径向积分归一化组件功率及偏差分布图

    Figure  17.  Radial integrated normalized assembly power and bias distribution of HFETR three-dimensional core layout scheme 4

    图  18  高通量工程试验堆堆芯布置方案1三维全堆轴向积分归一化组件功率及偏差分布图

    Figure  18.  Axial integrated normalized power and bias distribution of HFETR three-dimensional core layout scheme 1

    图  19  高通量工程试验堆堆芯布置方案4三维全堆轴向积分归一化组件功率及偏差分布图

    Figure  19.  Axial integrated normalized power and bias distribution of HFETR three-dimensional core layout scheme 4

    表  1  单环燃料栅元问题特征值及偏差结果

    Table  1.   Eigenvalue and bias results for single-ring fuel cell problem

    method eigenvalue bias/10−5 calculation time/s
    reference 1.72257±2.0×10−5 / /
    MRFRCM 1.72300 43 2.38
    TSG 1.72300 43 426.72
    下载: 导出CSV

    表  2  高通量工程试验堆不同堆芯布置方案二维全堆特征值计算结果

    Table  2.   Eigenvalue and bias results for different two-dimensional core layout schemes of HFETR

    scheme reference keff NECP-X keff bias/10−5
    scheme 1 1.04074±2.0×10−5 1.04177 103
    scheme 2 1.03544±4.0×10−5 1.03784 240
    scheme 3 1.03091±2.0×10−5 1.03066 −25
    下载: 导出CSV

    表  3  高通量工程试验堆不同堆芯布置方案三维全堆特征值计算结果

    Table  3.   Eigenvalue and bias results for different three-dimensional core layout schemes of HFETR

    scheme reference keff NECP-X keff bias/10−5
    scheme 1 1.00131±2.0×10−5 1.00102 −29
    scheme 4 1.00109±4.0×10−5 1.00096 −13
    下载: 导出CSV
  • [1] 张乾. 基于等价理论的先进共振自屏计算方法研究[D]. 西安: 西安交通大学, 2016

    Zhang Qian. Research on resonance self-shielding calculation method based on equivalence theory[D]. Xi’an: Xi’an Jiaotong University, 2016
    [2] Tebin V V, Yudkevich M S. Generalized subgroup approach to calculating the resonant absorption of neutrons[J]. Soviet Atomic Energy, 1985, 59(2): 639-645. doi: 10.1007/BF01122481
    [3] Ishiguro Y, Takano H. PEACO: a code for calculation of group constant of resonance energy region in heterogeneous systems[R]. Tokyo: Japan Atomic Energy Research Institute, 1971.
    [4] 张滕飞, 朱磊, 吴宏春, 等. 高通量堆燃料管理平台HEFT的研发与验证[J]. 原子能科学技术, 2013, 47(s2): 467-471

    Zhang Tengfei, Zhu Lei, Wu Hongchun, et al. Development and validation of high flux engineering test reactor fuel management platform HEFT[J]. Atomic Energy Science and Technology, 2013, 47(s2): 467-471
    [5] Chen Jun, Liu Zhouyu, Zhao Chen, et al. A new high-fidelity neutronics code NECP-X[J]. Annals of Nuclear Energy, 2018, 116: 417-428. doi: 10.1016/j.anucene.2018.02.049
    [6] 曹璐, 刘宙宇, 曹良志, 等. 基于NECP-X程序的三维复杂几何小型压水堆全堆芯一步法计算[J]. 核动力工程, 2018, 39(s2): 92-97

    Cao Lu, Liu Zhouyu, Cao Liangzhi, et al. One step whole core calculation of 3D complex geometrical small PWR based on NECP-X[J]. Nuclear Power Engineering, 2018, 39(s2): 92-97
    [7] 徐宁, 祖铁军, 曹良志, 等. NECP-Atlas程序中多群光子核数据处理模块的开发与验证[J]. 现代应用物理, 2021, 12: 010203

    Xu Ning, Zu Tiejun, Cao Liangzhi, et al. Development and verification of multi-group photon nuclear data processing modules in NECP-Atlas[J]. Modern Applied Physics, 2021, 12: 010203
    [8] Liu Zhouyu, He Qingming, Zu Tiejun, et al. The pseudo-resonant-nuclide subgroup method based global–local self-shielding calculation scheme[J]. Journal of Nuclear Science and Technology, 2018, 55(2): 217-228. doi: 10.1080/00223131.2017.1394232
    [9] 曹璐, 刘宙宇, 张旻婉, 等. NECP-X程序中基于全局-局部耦合策略的非棒状几何燃料共振计算方法研究[J]. 核动力工程, 2021, 42(1): 204-210

    Cao Lu, Liu Zhouyu, Zhang Minwan, et al. Resonance calculation method for non-rod-type fuel in NECP-X based on global-local coupling method[J]. Nuclear Power Engineering, 2021, 42(1): 204-210
    [10] 曹璐, 李达, 刘宙宇, 等. NECP-X中环形燃料共振计算方法及在西安脉冲堆的应用[J]. 现代应用物理, 2025, 16: 04001

    Cao Lu, Li Da, Liu Zhouyu, et al. The annular fuel resonance calculation method in NECP-X and its application to Xi’an pulse reactor[J]. Modern Applied Physics, 2025, 16: 04001
    [11] Liu Zhouyu, Zhao Chen, Cao Lu, et al. The material-region-based 2D/1D transport method[J]. Annals of Nuclear Energy, 2019, 128: 1-11. doi: 10.1016/j.anucene.2018.12.025
    [12] Zhao Chen, Liu Zhouyu, Ma Dangwei, et al. The iteration and parallel strategy for the 2D/1D transport method in NECP-X[C]//Proceedings of the International Conference on Mathematics & Computational Methods Applied to Nuclear Science &Engineering. 2017.
    [13] Wen Xingjian, Liu Zhouyu, Chen Jun, et al. Development and validation of the depletion capability of the high-fidelity neutronics code NECP-X[J]. Annals of Nuclear Energy, 2020, 138: 107096. doi: 10.1016/j.anucene.2019.107096
    [14] Liu Zhouyu, Wang Bo, Zhang Minwan, et al. An internal parallel coupling method based on NECP-X and CTF and analysis of the impact of thermal-hydraulic model to the high-fidelity calculations[J]. Annals of Nuclear Energy, 2020, 146: 107645. doi: 10.1016/j.anucene.2020.107645
    [15] 王博, 刘宙宇, 陈军, 等. 基于NECP-X程序的C5G7-TD系列基准题的计算与分析[J]. 核动力工程, 2020, 41(3): 24-30

    Wang Bo, Liu Zhouyu, Chen Jun, et al. Calculation and analysis of C5G7-TD benchmark based on NECP-X whole core transport transient solutions[J]. Nuclear Power Engineering, 2020, 41(3): 24-30
    [16] 张旻婉, 刘宙宇, 温兴坚, 等. 用NECP-X程序计算与分析VERA 9#基准题[J]. 现代应用物理, 2021, 12: 010212

    Zhang Minwan, Liu Zhouyu, Wen Xingjian, et al. Simulation and analysis of VERA benchmark problem 9# based on NECP-X code[J]. Modern Applied Physics, 2021, 12: 010212
    [17] 李志峰, 李帆, 赵常有, 等. 基于一步法的重反射层反应堆启动物理试验控制棒价值校核计算研究[J]. 现代应用物理, 2024, 15: 010405

    Li Zhifeng, Li Fan, Zhao Changyou, et al. Check calculation of control rod worth for the start up physics test in reactor with heavy reflector based on one-step method[J]. Modern Applied Physics, 2024, 15: 010405
    [18] 杨文华, 赵国正, 张亮, 等. 高通量工程试验堆辐照试验能力和辐照试验技术[J]. 核科学与工程, 2018, 38(6): 986-994

    Yang Wenhua, Zhao Guozheng, Zhang Liang, et al. Irradiation testing capabilities and irradiation testing technology of the HFETR[J]. Nuclear Science and Engineering, 2018, 38(6): 986-994
    [19] 彭钢. 三维堆芯连续能量蒙特卡罗程序用于HFETR零功率物理实验计算分析研究[J]. 核动力工程, 2012, 33(6): 127-131,138

    Peng Gang. Analysis on zero power experiment of high flux engineering test reactor with three-dimensional continuous energy Monte Carlo code[J]. Nuclear Power Engineering, 2012, 33(6): 127-131,138
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  23
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-02
  • 修回日期:  2025-09-15
  • 录用日期:  2025-09-15
  • 网络出版日期:  2025-09-19
  • 刊出日期:  2025-10-15

目录

    /

    返回文章
    返回