留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低能量强流高电荷态重离子加速器装置的建设与运行进展

翟雨 晗 杨尧 孙良 亭 张博 赵红 卫

翟雨 晗, 杨尧, 孙良 亭, 等. 低能量强流高电荷态重离子加速器装置的建设与运行进展[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250194
引用本文: 翟雨 晗, 杨尧, 孙良 亭, 等. 低能量强流高电荷态重离子加速器装置的建设与运行进展[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250194
Zhai Yuhan, Yang Yao, Sun Liangting, et al. Progress in the Construction and Commissioning of the LEAF Facility[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250194
Citation: Zhai Yuhan, Yang Yao, Sun Liangting, et al. Progress in the Construction and Commissioning of the LEAF Facility[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250194

低能量强流高电荷态重离子加速器装置的建设与运行进展

doi: 10.11884/HPLPB202537.250194
基金项目: 国家自然科学基金资助项目(11427904); 中国科学院科学仪器开发项目(GJJSTD20210007); 国家自然科学基金资助项目(12505187)
详细信息
    作者简介:

    翟雨晗,E-mail:zhaiyuhan16@impcas.ac.cn

    通讯作者:

    翟雨晗,E-mail:zhaiyuhan16@impcas.ac.cn

  • 中图分类号: TL56

Progress in the Construction and Commissioning of the LEAF Facility

  • 摘要: 低能量强流高电荷态重离子加速器装置(LEAF)是中国科学院近代物理研究所承担的国家重大科研仪器项目,旨在构建一台具备高电荷态、高流强、全谱系离子加速能力的低能重离子综合实验装置。系统介绍了该装置的结构、核心部件设计参数及束流调控策略,并重点报告了装置试运行期间在束流加速能力、多离子混合束制备及低能散碳离子束调控等方面取得的代表性进展。截至目前,LEAF已累计为终端实验提供超过13 000小时束流支持,覆盖质荷比A/q=2~7的多种离子种类,实现了高电荷态、高流强重离子束流的稳定加速。平台构建了适用于协同辐照研究的“鸡尾酒束”运行模式,并建立了具备高流强与低能散特性的12C2+束流系统,用于伽莫夫能区核反应的精密测量。最后,文章结合终端实验需求,提出了装置未来的发展方向,包括调能系统拓展与三离子协同供束能力增强等,以期进一步提升平台对核天体物理、核能材料等领域的支撑能力。
  • 图  1  LEAF平台布局图

    Figure  1.  Layout of the LEAF platform

    图  2  T1终端布局图

    Figure  2.  Layout of experimental terminal 1

    图  3  T2终端布局图

    Figure  3.  Layout of experimental terminal 2

    图  4  LEAF装置试运行期间不同类型实验任务的时间占比

    Figure  4.  Categorized time allocation of experiments conducted at LEAF during its commissioning

    图  5  加速16O6+流强大于1.0 emA时的RFQ效率测量。传输效率约90%,加速效率约87%

    Figure  5.  RFQ efficiency measurement when the accelerated 16O6+ current is stronger than 1.0 emA. The transmission efficiency is approximately 90%, and the acceleration efficiency is about 87%

    图  6  毫安级强流O6+重离子束流的初始发射度测量(左:水平方向;右:垂直方向)

    Figure  6.  The initial emittance measurement of a milliampere-class high-current O6+ heavy ion beam (left: horizontal direction; right: vertical direction)

    图  7  毫安级强流O6+重离子束流的能散度测量(通过QWR腔体抑制,1σ能散度约为0.115%)

    Figure  7.  Measurement of the energy spread of a milliampere-class high-current O6+ heavy ion beam (suppressed by the QWR cavity, with a 1σ energy spread of approximately 0.115%)

    图  8  硅探测器对H2+4He2+束流的分辨,粒子数比H:He约为1:10

    Figure  8.  H2+ and 4He2+ beam resolution by silicon detector, The number of particle ratio H:He is approximately 1:10

    图  9  强流碳离子束线布局图

    Figure  9.  Layout of high-current carbon ion beamline

    图  10  强流碳离子束的能散测量

    Figure  10.  Measurement of ΔE/E of high current C2+ ion beam

    图  11  LEAF装置能量范围扩展方案布局图

    Figure  11.  Layout of the energy range expansion scheme for the LEAF platform

    图  12  (a)扫描轨迹,(b)束斑中心在X方向的位移波形,(c)束斑中心在Y方向的位移波形(扫描频率分别为X方向98 Hz和Y方向96 Hz)

    Figure  12.  The (a) Scanning trace (b) displacement waveform in the x direction and (c) displacement waveform in the y direction of the beam spot center at the scanning frequency of 98 Hz (X) & 96 Hz (Y)

    表  1  FECR 主要设计参数

    Table  1.   The main design parameters of FECR

    operating frequency /GHzRF power /kWmagnet coilsmirror fields/TBradchamber ID/mmmirror length/mm
    28~45> 20Nb3Sn~6.4~3.2~Ø140~500
    下载: 导出CSV

    表  2  LEAF-RFQ 主要设计参数

    Table  2.   The main design parameters of LEAF-RFQ

    duty
    cycle
    operating
    frequency/MHz
    resonant
    type
    input particle
    energy/(keV·u−1)
    output particle
    energy/(keV·u−1)
    M/q
    range
    length of the
    RFQ vane/cm
    maximum vane
    voltage/kV
    100% (CW mode) 81.25 4~vane 14 500 2 (H2+)~7 (238U34+) ~596.4 70
    下载: 导出CSV

    表  3  IH-DTL主要设计参数

    Table  3.   The main design parameters of IH-DTL

    duty
    cycle
    operating
    frequency/MHz
    number
    of gaps
    Gap/mm tube
    length/mm
    maximum gap
    voltage/kV
    input particle
    energy/(keV·u−1)
    output particle
    energy/(keV·u−1)
    cavity
    length/mm
    100% (CW mode) 81.25 8 25.96 32 195 500 300~700 ~563.7
    下载: 导出CSV
  • [1] Yang Yao, Zhai Yuhan, Jiang P Y, et al. Commissioning progress of LEAF at IMP[J]. Journal of Physics: Conference Series, 2020, 1401: 012019. doi: 10.1088/1742-6596/1401/1/012019
    [2] Yang Jiancheng, Xia Jiawen, Xiao Guoqing, et al. High intensity heavy ion accelerator facility (HIAF) in China[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 317: 263-265. doi: 10.1016/j.nimb.2013.08.046
    [3] Zhao H W, Sun L T, Guo J W, et al. Superconducting ECR ion source: from 24-28 GHz SECRAL to 45 GHz fourth generation ECR[J]. Review of Scientific Instruments, 2018, 89: 052301. doi: 10.1063/1.5017479
    [4] Yang Yao, Tian Ruixia, Zhai Yuhan, et al. Development of a beam energy adjustment system after a Radio-Frequency-Quadrupole[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1039: 167095. doi: 10.1016/j.nima.2022.167095
    [5] Yang Yao, Zhai Yuhan, Tian Ruixia, et al. Longitudinal emittance measurement for an external-bunching-based heavy-ion RFQ[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1029: 166457. doi: 10.1016/j.nima.2022.166457
    [6] Barrón-Palos L, Aguilera E F, Aspiazu J, et al. Absolute cross sections measurement for the 12C + 12C system at astrophysically relevant energies[J]. Nuclear Physics A, 2006, 779: 318-332. doi: 10.1016/j.nuclphysa.2006.09.004
    [7] Wang Shuo, Li Yunzhen, Ru Longhui, et al. 12C+12C fusion reaction at astrophysical energies using HOPG target[J]. Nuclear Science and Techniques, 2025, 36: 143. doi: 10.1007/s41365-025-01714-3
    [8] Yang Yao, Sun L T, Zhai Yuhan, et al. Heavy ion accelerator facility front end design and commissioning[J]. Physical Review Accelerators and Beams, 2019, 22: 110101. doi: 10.1103/PhysRevAccelBeams.22.110101
    [9] Wu Zhengrong, Sun Liepeng, Qiu Feng, et al. A new multi-harmonic buncher for the LEAF project[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1047: 167856. doi: 10.1016/j.nima.2022.167856
    [10] Chauvin N. Space-charge effect[DB/OL]. arXiv preprint arXiv: 1410.7991, 2014.
    [11] Zhai Yuhan, Yang Yao, Sun Liangting, et al. Production of high intensity highly charged cocktail beams at LEAF[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1027: 166157. doi: 10.1016/j.nima.2021.166157
    [12] Zhai Yuhan, Yang Yao, Liu Yong, et al. Variable-energy cocktail beam technology for investigating synergistic damage in nuclear materials on LEAF platform[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024, 1069: 169987. doi: 10.1016/j.nima.2024.169987
    [13] Li J Q, Sun L T, Yang Yao, et al. Development of an all permanent magnet ECR ion source for low and medium charge state ions production[J]. Journal of Physics: Conference Series, 2020, 1401: 012022. doi: 10.1088/1742-6596/1401/1/012022
    [14] Baluc N. Materials for fusion power reactors[J]. Plasma Physics and Controlled Fusion, 2006, 48(12B): B165-B177. doi: 10.1088/0741-3335/48/12B/S16
    [15] Zinkle S J. Fusion materials science: overview of challenges and recent progress[J]. Physics of Plasmas, 2005, 12: 058101. doi: 10.1063/1.1880013
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  9
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-03
  • 修回日期:  2025-10-14
  • 录用日期:  2025-10-08
  • 网络出版日期:  2025-10-25

目录

    /

    返回文章
    返回