[1] |
易义成, 宋朝晖, 管兴胤, 等. 闪烁体电子发光非线性测量装置优化设计[J]. 现代应用物理, 2023, 14: 010202Yi Yicheng, Song Zhaohui, Guan Xingyin, et al. Optimized design of a facility for measuring scintillator non-proportionality[J]. Modern Applied Physics, 2023, 14: 010202
|
[2] |
金鹏, 张春生, 欧阳晓平, 等. 高光产额SrI2: Eu2+晶体制备及其闪烁性能研究[J]. 现代应用物理, 2024, 15: 010202Jin Peng, Zhang Chunsheng, Ouyang Xiaoping, et al. Growth and scintillation properties of SrI2: Eu2+ crystal with high light yield[J]. Modern Applied Physics, 2024, 15: 010202
|
[3] |
Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7): 505-514. doi: 10.1038/nphoton.2014.148
|
[4] |
Shi Dong, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 2015, 347(6221): 519-522. doi: 10.1126/science.aaa2725
|
[5] |
赵鹏, 欧阳晓平. 基于漂移-扩散理论的钙钛矿太阳能电池仿真综述[J]. 现代应用物理, 2020, 11: 010101Zhao Peng, Ouyang Xiaoping. An overview of perovskite solar cell simulation based on drift-diffusion theory[J]. Modern Applied Physics, 2020, 11: 010101
|
[6] |
Liang Yuqian, Zhao Zeqin, Hao Jinglu, et al. Interlamellar-spacing engineering of stable and toxicity-reduced 2D perovskite single crystal for high-resolution X-ray imaging[J]. Nano Letters, 2024, 24(27): 8436-8444. doi: 10.1021/acs.nanolett.4c02507
|
[7] |
Yakunin S, Sytnyk M, Kriegner D, et al. Detection of X-ray photons by solution-processed lead halide perovskites[J]. Nature Photonics, 2015, 9(7): 444-449. doi: 10.1038/nphoton.2015.82
|
[8] |
Xu Qiang, Huang Jie, Liu Jun, et al. Lead halide perovskite quantum dots based liquid scintillator for x-ray detection[J]. Nanotechnology, 2021, 32: 205201. doi: 10.1088/1361-6528/abe48a
|
[9] |
Mykhaylyk V B, Krausb H, Saliba M. Bright and fast scintillation of organolead perovskite MAPbBr3 at low temperatures[J]. Materials Horizons, 2019, 6(8): 1740-1747. doi: 10.1039/C9MH00281B
|
[10] |
Liu Jun, Hei Dongwei, Xu Qiang, et al. Low temperature scintillation performance of a Br-doped CH3NH3PbCl3 single-crystalline perovskite[J]. RSC Advances, 2021, 11(4): 2020-2024. doi: 10.1039/D0RA06860H
|
[11] |
Maculan G, Sheikh A D, Abdelhady A L, et al. CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV-photodetector[J]. The Journal of Physical Chemistry Letters, 2015, 6(19): 3781-3786. doi: 10.1021/acs.jpclett.5b01666
|
[12] |
Wang Lingrui, Wang Kai, Xiao Guanjun, et al. Pressure-induced structural evolution and band gap shifts of organometal halide Perovskite-based methylammonium lead chloride[J]. The Journal of Physical Chemistry Letters, 2016, 7(24): 5273-5279. doi: 10.1021/acs.jpclett.6b02420
|
[13] |
唐慧丽, 刘波, 徐军, 等. 超宽禁带半导体闪烁晶体氧化镓的研究进展[J]. 现代应用物理, 2021, 12: 020101Tang Huili, Liu Bo, Xu Jun, et al. Research progress of ultrawide-bandgap semiconductor scintillator β-Ga2O3[J]. Modern Applied Physics, 2021, 12: 020101
|
[14] |
Pankove J I. Optical processes in semiconductors[M]. Englewood Cliffs: Prentice-Hall, 1971.
|
[15] |
Dar M I, Jacopin G, Meloni S, et al. Origin of unusual bandgap shift and dual emission in organic-inorganic lead halide perovskites[J]. Science Advances, 2016, 2: e1601156. doi: 10.1126/sciadv.1601156
|
[16] |
Kanemitsu Y. Luminescence spectroscopy of lead-halide perovskites: materials properties and application as photovoltaic devices[J]. Journal of Materials Chemistry C, 2017, 5(14): 3427-3437. doi: 10.1039/C7TC00669A
|
[17] |
Luckey D. A fast inorganic scintillator[J]. Nuclear Instruments and Methods, 1968, 62(1): 119-120. doi: 10.1016/0029-554X(68)90628-9
|
[18] |
Shah J. Ultrafast spectroscopy of semiconductors and semiconductor nanostructures[M]. 2nd ed. Heidelberg: Springer, 1999.
|