留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机无机钙钛矿闪烁体差异化发光响应特性研究

刘军 谭新建 周磊簜 苏怀银 刘金良 徐青 唐波 欧阳晓平

刘军, 谭新建, 周磊簜, 等. 有机无机钙钛矿闪烁体差异化发光响应特性研究[J]. 强激光与粒子束, 2025, 37: 106017. doi: 10.11884/HPLPB202537.250195
引用本文: 刘军, 谭新建, 周磊簜, 等. 有机无机钙钛矿闪烁体差异化发光响应特性研究[J]. 强激光与粒子束, 2025, 37: 106017. doi: 10.11884/HPLPB202537.250195
Liu Jun, Tan Xinjian, Zhou Leidang, et al. Study on differential luminescence response of organic-inorganic lead halide perovskite[J]. High Power Laser and Particle Beams, 2025, 37: 106017. doi: 10.11884/HPLPB202537.250195
Citation: Liu Jun, Tan Xinjian, Zhou Leidang, et al. Study on differential luminescence response of organic-inorganic lead halide perovskite[J]. High Power Laser and Particle Beams, 2025, 37: 106017. doi: 10.11884/HPLPB202537.250195

有机无机钙钛矿闪烁体差异化发光响应特性研究

doi: 10.11884/HPLPB202537.250195
详细信息
    作者简介:

    刘 军,liujun@nint.ac.cn

  • 中图分类号: TL8

Study on differential luminescence response of organic-inorganic lead halide perovskite

  • 摘要: 闪烁体发光光谱与闪烁发光时间等性能参数直接相关,为研究不同粒子激发下的差异化闪烁发光问题,实验研究发现了CH3NH3PbCl3钙钛矿单晶闪烁体在不同粒子激发下的差异化发光光谱与时间响应特征。采用逆温结晶水热法制备了钙钛矿单晶样品,发光光谱方面主要考虑了激发粒子、粗糙度和晶体温度等因素,并对照采用ps低能X射线和ps紫外脉冲激光激发,发现了钙钛矿晶体的差异化闪烁发光时间响应波形特征。实验结果表明,晶体表面粗糙度和晶体温度均可对发光光谱特征产生比较明显的影响,同时该闪烁体分别在X射线和激光激发下表现出完全不同的发光光谱特征,研究结果可为钙钛矿闪烁体在X射线探测技术中的相关应用研究工作提供重要补充。
  • 图  1  CH3NH3PbCl3样品的X射线衍射谱图(XRD)

    Figure  1.  X-ray diffraction pattern of CH3NH3PbCl3 crystal sample

    图  2  CH3NH3PbCl3样品的X射线荧光谱图(XRF)

    Figure  2.  X-ray fluorescence spectrum of CH3NH3PbCl3 crystal sample

    图  3  CH3NH3PbCl3晶体激发光谱

    Figure  3.  Excitation spectra of CH3NH3PbCl3 crystal sample

    图  4  CH3NH3PbCl3晶体的光致发光光谱

    Figure  4.  Photoluminescence spectra of CH3NH3PbCl3 crystal sample

    图  5  不同温度下X射线激发CH3NH3PbCl3晶体发光光谱

    Figure  5.  Photoluminescence spectra of CH3NH3PbCl3 crystal sample under X-ray excitating at different temperatures

    图  6  不同粒子激发下归一化的CH3NH3PbCl3晶体闪烁发光波形

    Figure  6.  Normalized scintillation waveform of CH3NH3PbCl3 crystal sample excited by two different particles

  • [1] 易义成, 宋朝晖, 管兴胤, 等. 闪烁体电子发光非线性测量装置优化设计[J]. 现代应用物理, 2023, 14: 010202

    Yi Yicheng, Song Zhaohui, Guan Xingyin, et al. Optimized design of a facility for measuring scintillator non-proportionality[J]. Modern Applied Physics, 2023, 14: 010202
    [2] 金鹏, 张春生, 欧阳晓平, 等. 高光产额SrI2: Eu2+晶体制备及其闪烁性能研究[J]. 现代应用物理, 2024, 15: 010202

    Jin Peng, Zhang Chunsheng, Ouyang Xiaoping, et al. Growth and scintillation properties of SrI2: Eu2+ crystal with high light yield[J]. Modern Applied Physics, 2024, 15: 010202
    [3] Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7): 505-514. doi: 10.1038/nphoton.2014.148
    [4] Shi Dong, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 2015, 347(6221): 519-522. doi: 10.1126/science.aaa2725
    [5] 赵鹏, 欧阳晓平. 基于漂移-扩散理论的钙钛矿太阳能电池仿真综述[J]. 现代应用物理, 2020, 11: 010101

    Zhao Peng, Ouyang Xiaoping. An overview of perovskite solar cell simulation based on drift-diffusion theory[J]. Modern Applied Physics, 2020, 11: 010101
    [6] Liang Yuqian, Zhao Zeqin, Hao Jinglu, et al. Interlamellar-spacing engineering of stable and toxicity-reduced 2D perovskite single crystal for high-resolution X-ray imaging[J]. Nano Letters, 2024, 24(27): 8436-8444. doi: 10.1021/acs.nanolett.4c02507
    [7] Yakunin S, Sytnyk M, Kriegner D, et al. Detection of X-ray photons by solution-processed lead halide perovskites[J]. Nature Photonics, 2015, 9(7): 444-449. doi: 10.1038/nphoton.2015.82
    [8] Xu Qiang, Huang Jie, Liu Jun, et al. Lead halide perovskite quantum dots based liquid scintillator for x-ray detection[J]. Nanotechnology, 2021, 32: 205201. doi: 10.1088/1361-6528/abe48a
    [9] Mykhaylyk V B, Krausb H, Saliba M. Bright and fast scintillation of organolead perovskite MAPbBr3 at low temperatures[J]. Materials Horizons, 2019, 6(8): 1740-1747. doi: 10.1039/C9MH00281B
    [10] Liu Jun, Hei Dongwei, Xu Qiang, et al. Low temperature scintillation performance of a Br-doped CH3NH3PbCl3 single-crystalline perovskite[J]. RSC Advances, 2021, 11(4): 2020-2024. doi: 10.1039/D0RA06860H
    [11] Maculan G, Sheikh A D, Abdelhady A L, et al. CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV-photodetector[J]. The Journal of Physical Chemistry Letters, 2015, 6(19): 3781-3786. doi: 10.1021/acs.jpclett.5b01666
    [12] Wang Lingrui, Wang Kai, Xiao Guanjun, et al. Pressure-induced structural evolution and band gap shifts of organometal halide Perovskite-based methylammonium lead chloride[J]. The Journal of Physical Chemistry Letters, 2016, 7(24): 5273-5279. doi: 10.1021/acs.jpclett.6b02420
    [13] 唐慧丽, 刘波, 徐军, 等. 超宽禁带半导体闪烁晶体氧化镓的研究进展[J]. 现代应用物理, 2021, 12: 020101

    Tang Huili, Liu Bo, Xu Jun, et al. Research progress of ultrawide-bandgap semiconductor scintillator β-Ga2O3[J]. Modern Applied Physics, 2021, 12: 020101
    [14] Pankove J I. Optical processes in semiconductors[M]. Englewood Cliffs: Prentice-Hall, 1971.
    [15] Dar M I, Jacopin G, Meloni S, et al. Origin of unusual bandgap shift and dual emission in organic-inorganic lead halide perovskites[J]. Science Advances, 2016, 2: e1601156. doi: 10.1126/sciadv.1601156
    [16] Kanemitsu Y. Luminescence spectroscopy of lead-halide perovskites: materials properties and application as photovoltaic devices[J]. Journal of Materials Chemistry C, 2017, 5(14): 3427-3437. doi: 10.1039/C7TC00669A
    [17] Luckey D. A fast inorganic scintillator[J]. Nuclear Instruments and Methods, 1968, 62(1): 119-120. doi: 10.1016/0029-554X(68)90628-9
    [18] Shah J. Ultrafast spectroscopy of semiconductors and semiconductor nanostructures[M]. 2nd ed. Heidelberg: Springer, 1999.
  • 加载中
图(6)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  29
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-03
  • 修回日期:  2025-09-07
  • 录用日期:  2025-09-07
  • 网络出版日期:  2025-09-24
  • 刊出日期:  2025-10-15

目录

    /

    返回文章
    返回