留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

实现射线-光转换探测的氮化镓基半导体器件研究

王方宝 周磊簜 张斯龙 卢星 王建峰 赵乃哲 张囡 陈亮 欧阳晓平

王方宝, 周磊簜, 张斯龙, 等. 实现射线-光转换探测的氮化镓基半导体器件研究[J]. 强激光与粒子束, 2025, 37: 106009. doi: 10.11884/HPLPB202537.250196
引用本文: 王方宝, 周磊簜, 张斯龙, 等. 实现射线-光转换探测的氮化镓基半导体器件研究[J]. 强激光与粒子束, 2025, 37: 106009. doi: 10.11884/HPLPB202537.250196
Wang Fangbao, Zhou Leidang, Zhang Silong, et al. Study on GaN-based semiconductor devices for radiation-optical conversion detection[J]. High Power Laser and Particle Beams, 2025, 37: 106009. doi: 10.11884/HPLPB202537.250196
Citation: Wang Fangbao, Zhou Leidang, Zhang Silong, et al. Study on GaN-based semiconductor devices for radiation-optical conversion detection[J]. High Power Laser and Particle Beams, 2025, 37: 106009. doi: 10.11884/HPLPB202537.250196

实现射线-光转换探测的氮化镓基半导体器件研究

doi: 10.11884/HPLPB202537.250196
详细信息
    作者简介:

    王方宝,wangfangbao@nint.ac.cn

    通讯作者:

    陈 亮,chenliang@nint.ac.cn

  • 中图分类号: TL81;TM23

Study on GaN-based semiconductor devices for radiation-optical conversion detection

  • 摘要: 氮化镓(GaN)材料具有优异的光电性能,可以兼顾半导体和闪烁体的工作模式,在辐射探测领域有广泛的应用潜力。制备了一种由高阻氮化镓衬底层和同质外延多量子阱层串联组合的转换器件,实现了高能辐射在高阻衬底部分激发的载流子通过电场输运至多量子阱实现复合发光。实验表明,器件在工作模式下具有低的暗电流和对X射线灵敏的电学响应。在电场作用下,器件中多量子阱结构发光峰位于410 nm。发光强度随X射线剂量变化有明显提升。通过采集器件发光图像的方法直观验证了器件实现辐射到光信号的转换功能。
  • 图  1  射线-光转换原理示意图

    Figure  1.  Schematic diagram of radiation-optical conversion principle

    图  2  GaN基射线-光转换器件结构示意图

    Figure  2.  Schematic diagram of GaN-based radiation-optical conversion device

    图  3  多量子阱结构扫描电镜照片及EDS面扫图像

    Figure  3.  Scanning electron micrograph of multi-quantum well structure and EDS surface scanning image

    图  4  器件的暗电流I-V曲线和X射线响应曲线

    Figure  4.  Dark current I-V curve and X-ray response curve of the device

    图  5  器件在激光、X射线及电场作用下的发光光谱

    Figure  5.  Photoluminescence spectra of devices under the action of laser, X-ray and electric field

    图  6  器件的发光图像

    Figure  6.  Light-emitting image of device

    图  7  器件发光区域的灰度线性分布曲线和发光图像灰度随电压变化趋势

    Figure  7.  Linear distribution curve of grayscale in the light-emitting region of the device and the variation trend of grayscale with voltage in the light-emitting image

  • [1] 刘洋, 苏春磊, 欧阳晓平, 等. 电流型GaN辐射探测器研制[J]. 现代应用物理, 2013, 4(4): 319-322 doi: 10.3969/j.issn.2095-6223.2013.04.003

    Liu Yang, Su Chunlei, Ouyang Xiaoping, et al. A current mode GaN radiation detector[J]. Modern Applied Physics, 2013, 4(4): 319-322 doi: 10.3969/j.issn.2095-6223.2013.04.003
    [2] Pearton S J, Zolper J C, Shul R J, et al. GaN: processing, defects, and devices[J]. Journal of Applied Physics, 1999, 86(1): 1-78. doi: 10.1063/1.371145
    [3] Gao Hengjie. Advancements and future prospects of Gallium Nitride (GaN) in semiconductor technology[J]. Applied and Computational Engineering, 2024, 65(1): 37-44. doi: 10.54254/2755-2721/65/20240468
    [4] 梁勤金, 陈世韬, 余川, 等. 1.2kW C波段固态高效率GaN微波源研制[J]. 强激光与粒子束, 2014, 26: 103002 doi: 10.3788/HPLPB20142610.103002

    Liang Qinjin, Chen Shitao, Yu Chuan, et al. Development of 1.2kW C band solid-state high efficiency GaN microwave source[J]. High Power Laser and Particle Beams, 2014, 26: 103002 doi: 10.3788/HPLPB20142610.103002
    [5] Yao Yuxuan, Liang Yue, Guo Jiabao, et al. The development and applications of nanoporous gallium nitride in optoelectronics: a review[J]. Semiconductor Science and Technology, 2023, 38: 074001. doi: 10.1088/1361-6641/accd14
    [6] 邱一武, 董磊, 殷亚楠, 等. 共源共栅结构GaN HEMT器件高能质子辐射效应[J]. 强激光与粒子束, 2025, 37: 024003 doi: 10.11884/HPLPB202537.240223

    Qiu Yiwu, Dong Lei, Yin Yanan, et al. High-energy proton irradiation effect of Cascode structure GaN HEMT device[J]. High Power Laser and Particle Beams, 2025, 37: 024003 doi: 10.11884/HPLPB202537.240223
    [7] Kumar A S, Dalcanale S, Uren M J, et al. Gallium nitride multichannel devices with latch-induced sub-60-mV-per-decade subthreshold slopes for radiofrequency applications[J]. Nature Electronics, 2025, 8(6): 510-517. doi: 10.1038/s41928-025-01391-5
    [8] 陈泉佑, 赵景涛, 朱小锋, 等. AlGaN/GaN HEMTs器件中子辐照效应实验和数值模拟研究[J]. 现代应用物理, 2023, 14: 010604 doi: 10.12061/j.issn.2095-6223.2023.010604

    Chen Quanyou, Zhao Jingtao, Zhu Xiaofeng, et al. Experimental study and numerical simulation of neutron irradiation effects on AlGaN/GaN HEMTs[J]. Modern Applied Physics, 2023, 14: 010604 doi: 10.12061/j.issn.2095-6223.2023.010604
    [9] 张翱, 孙世峰, 张翔铭, 等. 双端读出提高快中子探测器时间分辨率方法的研究[J]. 现代应用物理, 2024, 15: 050201

    Zhang Ao, Sun Shifeng, Zhang Xiangming, et al. Temporal resolution optimization of fast neutron detector using dual-ended readout method[J]. Modern Applied Physics, 2024, 15: 050201
    [10] 刘金良, 何世熠, 张显鹏, 等. 反冲质子卡阈中子探测靶室偏转磁场设计[J]. 现代应用物理, 2023, 14: 010204 doi: 10.12061/j.issn.2095-6223.2023.010204

    Liu Jinliang, He Shiyi, Zhang Xianpeng, et al. Deflecting magnetic field design for recoil-proton neutron detection system with high energy threshold[J]. Modern Applied Physics, 2023, 14: 010204 doi: 10.12061/j.issn.2095-6223.2023.010204
    [11] 朱伟龙, 王鹏, 郑辰雅, 等. 基于GaN的高频高功率密度混合集成电源设计[J]. 强激光与粒子束, 2025, 37: 035015 doi: 10.11884/HPLPB202537.240318

    Zhu Weilong, Wang Peng, Zheng Chenya, et al. Design of high-frequency, high-power density hybrid integrated power supply based on GaN high electron mobility transistors[J]. High Power Laser and Particle Beams, 2025, 37: 035015 doi: 10.11884/HPLPB202537.240318
    [12] Chen Lu. Design and application of high-efficiency gallium nitride (GaN)-based power electronic devices[J]. Applied and Computational Engineering, 2025, 153(1): 90-95. doi: 10.54254/2755-2721/2025.23350
    [13] Xiong Yixin, Sadek M, Chu Rongming. Recent advances in GaN-based power devices and integration[J]. Semiconductor Science and Technology, 2025, 40: 033002. doi: 10.1088/1361-6641/adb32d
    [14] Fan Yutong, Liu Xi, Zhang Weihang, et al. Monolithic heterogeneous integration of Si(100)/GaN CMOS inverters and normally-off GaN power devices for high switching frequency and high power applications[C]//2024 36th International Symposium on Power Semiconductor Devices and ICs (ISPSD). 2024: 267-270.
    [15] 王馨梅, 郑泽彬, 范樱宝, 等. 基于等离子体紫外辐射的强激光自动寻焦系统[J]. 强激光与粒子束, 2019, 31: 091006 doi: 10.11884/HPLPB201931.190252

    Wang Xinmei, Zheng Zebin, Fan Yingbao, et al. A focus automatic positioning system of high-power laser beam based on plasma ultraviolet radiation[J]. High Power Laser and Particle Beams, 2019, 31: 091006 doi: 10.11884/HPLPB201931.190252
    [16] Wakui M, Hu Fangren, Sameshima H, et al. Growth of GaN LED structure on Si substrate by MBE and monolithic fabrication of GaN LED cooling system[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2010, 5(2): 171-174. doi: 10.1002/tee.20513
    [17] Huang H W, Kao C C, Chu J T, et al. Investigation of GaN LED with Be-implanted Mg-doped GaN layer[J]. Materials Science and Engineering: B, 2004, 113(1): 19-23. doi: 10.1016/j.mseb.2004.05.024
    [18] Jin Xiaomin, Trieu S, Chavoor G J, et al. Enhancing GaN LED efficiency through nano-gratings and standing wave analysis[J]. Nanomaterials, 2018, 8: 1045. doi: 10.3390/nano8121045
    [19] Pittet P, Lu Guoneng, Galvan J M, et al. Implantable real-time dosimetric probe using GaN as scintillation material[J]. Sensors and Actuators A: Physical, 2009, 151(1): 29-34. doi: 10.1016/j.sna.2009.02.018
    [20] Schenk H P D, Borenstain S I, Berezin A, et al. Cathodoluminescence of epitaxial GaN and ZnO thin films for scintillator applications[J]. Journal of Crystal Growth, 2009, 311(16): 3984-3988. doi: 10.1016/j.jcrysgro.2009.06.018
    [21] Li Qiubo, Liu Guangxia, Wang Shouzhi, et al. The effect of GaN single crystal substrate characteristics on homo-epitaxial GaN films[J]. Surfaces and Interfaces, 2025, 56: 105554. doi: 10.1016/j.surfin.2024.105554
    [22] Toci G, Gizzi L A, Koester P, et al. InGaN/GaN multiple quantum well for superfast scintillation application: photoluminescence measurements of the picosecond rise time and excitation density effect[J]. Journal of Luminescence, 2019, 208: 119-124. doi: 10.1016/j.jlumin.2018.12.034
    [23] Hoffmann A, Holst J, Kaschner A, et al. Impact of the ZnO buffer on the optical properties of GaN: time resolved micro-photoluminescence[J]. Materials Science and Engineering: B, 1999, 59(1/3): 163-167.
    [24] Demchenko D O, Diallo I C, Reshchikov M A. Yellow luminescence of gallium nitride generated by carbon defect complexes[J]. Physical Review Letters, 2013, 110: 087404. doi: 10.1103/PhysRevLett.110.087404
    [25] Stoddard N, Pimputkar S. Progress in ammonothermal crystal growth of gallium nitride from 2017-2023: process, defects and devices[J]. Crystals, 2023, 13: 1004. doi: 10.3390/cryst13071004
    [26] Jin S R, Ramsteiner M, Grahn H T, et al. Suppression of yellow luminescence in As-doped GaN epilayers grown by metalorganic chemical vapor deposition[J]. Journal of Crystal Growth, 2000, 212(1/2): 56-60.
    [27] Rodrigues J, Miranda S M C, Fernandes A J S, et al. Towards the understanding of the intentionally induced yellow luminescence in GaN nanowires[J]. Physica Status Solidi C, 2013, 10(4): 667-672. doi: 10.1002/pssc.201200714
    [28] Hsu Y P, Chang S J, Su Y K, et al. InGaN–GaN MQW LEDs with Si treatment[J]. IEEE Photonics Technology Letters, 2005, 17(8): 1620-1622. doi: 10.1109/LPT.2005.851989
    [29] Ferdous M S, Wang X, Fairchild M N, et al. Effect of threading defects on InGaN/GaN multiple quantum well light emitting diodes[J]. Applied Physics Letters, 2007, 91: 231107. doi: 10.1063/1.2822395
    [30] Hospodková A, Nikl M, Pacherová O, et al. InGaN/GaN multiple quantum well for fast scintillation application: radioluminescence and photoluminescence study[J]. Nanotechnology, 2014, 25: 455501. doi: 10.1088/0957-4484/25/45/455501
    [31] 陈志忠, 徐科, 秦志新, 等. InGaN/GaN多量子阱LED电致发光谱中双峰起源的研究[J]. 半导体学报, 2007, 28(7): 1121-1124

    Chen Zhizhong, Xu Ke, Qin Zhixin, et al. Origins of double emission peaks in electroluminescence spectrum from InGaN/GaN MQW LED[J]. Chinese Journal of Semiconductors, 2007, 28(7): 1121-1124
    [32] O’Donovan M, Farrell P, Moatti J, et al. Impact of random alloy fluctuations on the carrier distribution in multi-color (In, Ga)N/GaN quantum well systems[J]. Physical Review Applied, 2024, 21: 024052. doi: 10.1103/PhysRevApplied.21.024052
  • 加载中
图(7)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  25
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-03
  • 修回日期:  2025-09-14
  • 录用日期:  2025-09-14
  • 网络出版日期:  2025-09-19
  • 刊出日期:  2025-10-15

目录

    /

    返回文章
    返回