[1] |
刘洋, 苏春磊, 欧阳晓平, 等. 电流型GaN辐射探测器研制[J]. 现代应用物理, 2013, 4(4): 319-322 doi: 10.3969/j.issn.2095-6223.2013.04.003Liu Yang, Su Chunlei, Ouyang Xiaoping, et al. A current mode GaN radiation detector[J]. Modern Applied Physics, 2013, 4(4): 319-322 doi: 10.3969/j.issn.2095-6223.2013.04.003
|
[2] |
Pearton S J, Zolper J C, Shul R J, et al. GaN: processing, defects, and devices[J]. Journal of Applied Physics, 1999, 86(1): 1-78. doi: 10.1063/1.371145
|
[3] |
Gao Hengjie. Advancements and future prospects of Gallium Nitride (GaN) in semiconductor technology[J]. Applied and Computational Engineering, 2024, 65(1): 37-44. doi: 10.54254/2755-2721/65/20240468
|
[4] |
梁勤金, 陈世韬, 余川, 等. 1.2kW C波段固态高效率GaN微波源研制[J]. 强激光与粒子束, 2014, 26: 103002 doi: 10.3788/HPLPB20142610.103002Liang Qinjin, Chen Shitao, Yu Chuan, et al. Development of 1.2kW C band solid-state high efficiency GaN microwave source[J]. High Power Laser and Particle Beams, 2014, 26: 103002 doi: 10.3788/HPLPB20142610.103002
|
[5] |
Yao Yuxuan, Liang Yue, Guo Jiabao, et al. The development and applications of nanoporous gallium nitride in optoelectronics: a review[J]. Semiconductor Science and Technology, 2023, 38: 074001. doi: 10.1088/1361-6641/accd14
|
[6] |
邱一武, 董磊, 殷亚楠, 等. 共源共栅结构GaN HEMT器件高能质子辐射效应[J]. 强激光与粒子束, 2025, 37: 024003 doi: 10.11884/HPLPB202537.240223Qiu Yiwu, Dong Lei, Yin Yanan, et al. High-energy proton irradiation effect of Cascode structure GaN HEMT device[J]. High Power Laser and Particle Beams, 2025, 37: 024003 doi: 10.11884/HPLPB202537.240223
|
[7] |
Kumar A S, Dalcanale S, Uren M J, et al. Gallium nitride multichannel devices with latch-induced sub-60-mV-per-decade subthreshold slopes for radiofrequency applications[J]. Nature Electronics, 2025, 8(6): 510-517. doi: 10.1038/s41928-025-01391-5
|
[8] |
陈泉佑, 赵景涛, 朱小锋, 等. AlGaN/GaN HEMTs器件中子辐照效应实验和数值模拟研究[J]. 现代应用物理, 2023, 14: 010604 doi: 10.12061/j.issn.2095-6223.2023.010604Chen Quanyou, Zhao Jingtao, Zhu Xiaofeng, et al. Experimental study and numerical simulation of neutron irradiation effects on AlGaN/GaN HEMTs[J]. Modern Applied Physics, 2023, 14: 010604 doi: 10.12061/j.issn.2095-6223.2023.010604
|
[9] |
张翱, 孙世峰, 张翔铭, 等. 双端读出提高快中子探测器时间分辨率方法的研究[J]. 现代应用物理, 2024, 15: 050201Zhang Ao, Sun Shifeng, Zhang Xiangming, et al. Temporal resolution optimization of fast neutron detector using dual-ended readout method[J]. Modern Applied Physics, 2024, 15: 050201
|
[10] |
刘金良, 何世熠, 张显鹏, 等. 反冲质子卡阈中子探测靶室偏转磁场设计[J]. 现代应用物理, 2023, 14: 010204 doi: 10.12061/j.issn.2095-6223.2023.010204Liu Jinliang, He Shiyi, Zhang Xianpeng, et al. Deflecting magnetic field design for recoil-proton neutron detection system with high energy threshold[J]. Modern Applied Physics, 2023, 14: 010204 doi: 10.12061/j.issn.2095-6223.2023.010204
|
[11] |
朱伟龙, 王鹏, 郑辰雅, 等. 基于GaN的高频高功率密度混合集成电源设计[J]. 强激光与粒子束, 2025, 37: 035015 doi: 10.11884/HPLPB202537.240318Zhu Weilong, Wang Peng, Zheng Chenya, et al. Design of high-frequency, high-power density hybrid integrated power supply based on GaN high electron mobility transistors[J]. High Power Laser and Particle Beams, 2025, 37: 035015 doi: 10.11884/HPLPB202537.240318
|
[12] |
Chen Lu. Design and application of high-efficiency gallium nitride (GaN)-based power electronic devices[J]. Applied and Computational Engineering, 2025, 153(1): 90-95. doi: 10.54254/2755-2721/2025.23350
|
[13] |
Xiong Yixin, Sadek M, Chu Rongming. Recent advances in GaN-based power devices and integration[J]. Semiconductor Science and Technology, 2025, 40: 033002. doi: 10.1088/1361-6641/adb32d
|
[14] |
Fan Yutong, Liu Xi, Zhang Weihang, et al. Monolithic heterogeneous integration of Si(100)/GaN CMOS inverters and normally-off GaN power devices for high switching frequency and high power applications[C]//2024 36th International Symposium on Power Semiconductor Devices and ICs (ISPSD). 2024: 267-270.
|
[15] |
王馨梅, 郑泽彬, 范樱宝, 等. 基于等离子体紫外辐射的强激光自动寻焦系统[J]. 强激光与粒子束, 2019, 31: 091006 doi: 10.11884/HPLPB201931.190252Wang Xinmei, Zheng Zebin, Fan Yingbao, et al. A focus automatic positioning system of high-power laser beam based on plasma ultraviolet radiation[J]. High Power Laser and Particle Beams, 2019, 31: 091006 doi: 10.11884/HPLPB201931.190252
|
[16] |
Wakui M, Hu Fangren, Sameshima H, et al. Growth of GaN LED structure on Si substrate by MBE and monolithic fabrication of GaN LED cooling system[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2010, 5(2): 171-174. doi: 10.1002/tee.20513
|
[17] |
Huang H W, Kao C C, Chu J T, et al. Investigation of GaN LED with Be-implanted Mg-doped GaN layer[J]. Materials Science and Engineering: B, 2004, 113(1): 19-23. doi: 10.1016/j.mseb.2004.05.024
|
[18] |
Jin Xiaomin, Trieu S, Chavoor G J, et al. Enhancing GaN LED efficiency through nano-gratings and standing wave analysis[J]. Nanomaterials, 2018, 8: 1045. doi: 10.3390/nano8121045
|
[19] |
Pittet P, Lu Guoneng, Galvan J M, et al. Implantable real-time dosimetric probe using GaN as scintillation material[J]. Sensors and Actuators A: Physical, 2009, 151(1): 29-34. doi: 10.1016/j.sna.2009.02.018
|
[20] |
Schenk H P D, Borenstain S I, Berezin A, et al. Cathodoluminescence of epitaxial GaN and ZnO thin films for scintillator applications[J]. Journal of Crystal Growth, 2009, 311(16): 3984-3988. doi: 10.1016/j.jcrysgro.2009.06.018
|
[21] |
Li Qiubo, Liu Guangxia, Wang Shouzhi, et al. The effect of GaN single crystal substrate characteristics on homo-epitaxial GaN films[J]. Surfaces and Interfaces, 2025, 56: 105554. doi: 10.1016/j.surfin.2024.105554
|
[22] |
Toci G, Gizzi L A, Koester P, et al. InGaN/GaN multiple quantum well for superfast scintillation application: photoluminescence measurements of the picosecond rise time and excitation density effect[J]. Journal of Luminescence, 2019, 208: 119-124. doi: 10.1016/j.jlumin.2018.12.034
|
[23] |
Hoffmann A, Holst J, Kaschner A, et al. Impact of the ZnO buffer on the optical properties of GaN: time resolved micro-photoluminescence[J]. Materials Science and Engineering: B, 1999, 59(1/3): 163-167.
|
[24] |
Demchenko D O, Diallo I C, Reshchikov M A. Yellow luminescence of gallium nitride generated by carbon defect complexes[J]. Physical Review Letters, 2013, 110: 087404. doi: 10.1103/PhysRevLett.110.087404
|
[25] |
Stoddard N, Pimputkar S. Progress in ammonothermal crystal growth of gallium nitride from 2017-2023: process, defects and devices[J]. Crystals, 2023, 13: 1004. doi: 10.3390/cryst13071004
|
[26] |
Jin S R, Ramsteiner M, Grahn H T, et al. Suppression of yellow luminescence in As-doped GaN epilayers grown by metalorganic chemical vapor deposition[J]. Journal of Crystal Growth, 2000, 212(1/2): 56-60.
|
[27] |
Rodrigues J, Miranda S M C, Fernandes A J S, et al. Towards the understanding of the intentionally induced yellow luminescence in GaN nanowires[J]. Physica Status Solidi C, 2013, 10(4): 667-672. doi: 10.1002/pssc.201200714
|
[28] |
Hsu Y P, Chang S J, Su Y K, et al. InGaN–GaN MQW LEDs with Si treatment[J]. IEEE Photonics Technology Letters, 2005, 17(8): 1620-1622. doi: 10.1109/LPT.2005.851989
|
[29] |
Ferdous M S, Wang X, Fairchild M N, et al. Effect of threading defects on InGaN/GaN multiple quantum well light emitting diodes[J]. Applied Physics Letters, 2007, 91: 231107. doi: 10.1063/1.2822395
|
[30] |
Hospodková A, Nikl M, Pacherová O, et al. InGaN/GaN multiple quantum well for fast scintillation application: radioluminescence and photoluminescence study[J]. Nanotechnology, 2014, 25: 455501. doi: 10.1088/0957-4484/25/45/455501
|
[31] |
陈志忠, 徐科, 秦志新, 等. InGaN/GaN多量子阱LED电致发光谱中双峰起源的研究[J]. 半导体学报, 2007, 28(7): 1121-1124Chen Zhizhong, Xu Ke, Qin Zhixin, et al. Origins of double emission peaks in electroluminescence spectrum from InGaN/GaN MQW LED[J]. Chinese Journal of Semiconductors, 2007, 28(7): 1121-1124
|
[32] |
O’Donovan M, Farrell P, Moatti J, et al. Impact of random alloy fluctuations on the carrier distribution in multi-color (In, Ga)N/GaN quantum well systems[J]. Physical Review Applied, 2024, 21: 024052. doi: 10.1103/PhysRevApplied.21.024052
|