Calibration methodology for near-field neutron sensitivity of large-scale plastic scintillators
-
摘要: 针对大尺寸塑料闪烁体(Φ100 mm×100 mm)在近场(<1 m)脉冲中子测量中因标定与测量几何差异导致的中子灵敏度偏差问题,本研究提出基于实验和蒙特卡洛模拟的双外推动态标定方法。建立蒙特卡洛模拟模型,量化距离对灵敏度的影响规律。模拟结果表明:当源距小于80 cm时,需要考虑距离对于中子灵敏度的影响,当源距缩短至20 cm时,中子灵敏度修正系数达到8.44%。通过近场实验分析,提出了一种散射本底外推方法,较为准确地测量了近场中子探测器的灵敏度,实验结果验证了理论模拟的准确性。研究建立的修正方法能够在平方反比定律不适用的条件下,有效降低传统单点标定法在近场测量中的系统偏差,扩展了中子探测器的测量范围,为脉冲堆瞬态诊断、聚变装置等强辐射场环境下的精确中子计量提供了新的技术途径。Abstract:
Background In near-field pulsed neutron measurements (<1 m), large-sized plastic scintillators (Φ100 mm × 100 mm) exhibit neutron sensitivity deviation due to geometric discrepancies between calibration and measurement, and the inverse-square law has limited applicability under close-proximity conditions, hindering accurate metrology.Purpose To address this deviation, reduce systematic errors from traditional single-point calibration, and extend neutron sensitivity calibration range, this study proposes a dual-extrapolation dynamic calibration method combining experimental extrapolation with Monte Carlo (MC) simulation.Methods An MC model was established to quantify distance’s effect on sensitivity, and a scattering background extrapolation method was developed via near-field experiments for close-proximity sensitivity measurement.Results MC results show source-to-detector distance <80 cm significantly impacts sensitivity, with an 8.44% correction factor at 20 cm; experiments validated simulation accuracy.Conclusions This method effectively mitigates sensitivity deviation, clarifies the inverse-square law’s limitations under close proximity, extends calibration scope, and provides a new technical pathway for precise neutron metrology in harsh environments like pulsed reactor transient diagnostics and fusion devices. -
表 1 MCNP模拟结果
Table 1. MCNP simulation results
distance/cm proton deposited
energy(Epro)electron deposited
energy(Eelec)total deposited
energyinverse-square-law-derived
distance datarelative
deviation/%150 6.05E-04 2.59E-05 6.48E-04 6.53E-04 −0.73 100(reference) 1.37E-03 5.91E-05 1.47E-03 1.47E-03 0 80 2.15E-03 9.48E-05 2.31E-03 2.29E-03 0.54 60 3.85E-03 1.74E-04 4.14E-03 4.08E-03 1.59 40 7.77E-03 3.61E-04 8.37E-03 8.13E-03 3.01 20 3.68E-02 1.80E-03 3.98E-02 3.67E-02 8.44 表 2 基准区散射系数实验结果
Table 2. Experimental results of scattering coefficients in reference region
distance from crystal center /cm source neutron yield net signal/nA scattering coefficient 106.9 2.62E+09 37.65 1.44E-08 121.6 2.12E+09 24.75 1.17E-08 137.7 2.17E+09 21.81 1.01E-08 155.7 1.39E+09 12.47 8.97E-09 202.6 2.01E+09 13.54 6.74E-09 表 3 MCNP模拟结果与实验结果对比
Table 3. Comparison between MCNP simulations and experimental results
distance from crystal center /cm measured sensitivity measured deviation % simulated deviation % (simulated - measured)/% 32.3 1.228E-11 5.09 4.78 −0.31 41.1 1.203E-11 2.95 3.47 0.52 75.8 1.171E-11 0.17 1.04 0.87 112.2(Reference) 1.169E-11 0 0 0 表 4 拟合曲线在不同实验距离对应的不确定度
Table 4. Uncertainty distribution of fitting curves across experimental distances
distance/cm standard uncertainty of
fitting curvesoutput signals corresponding to
experimental yields/nAdirect irradiation signals corresponding to
experimental yields/nAuncertainty components of
fitting curves/%32.3 8.79×10−9 5.53 1245.30 0.44 41.1 5.07×10−9 4.23 1000.70 0.42 75.8 9.35×10−10 0.76 279.05 0.27 112.2 3.38×10−11 0.06 300.04 0.02 表 5 不同实验距离对应的总不确定度
Table 5. The total uncertainty corresponding to different experimental distances
distance/
cmuncertainty components of
fitting curves/%uncertainty components of
distance measurement/%uncertainty components of
neutron fluence rate monitoring/%uncertainty components of
electrometer signal/%combined standard
uncertainty(k=1)/%32.3 0.44 0.62 1.5 1 2.05 41.1 0.42 0.48 1.5 1 1.97 75.8 0.27 0.26 1.5 1 1.86 112.2 0.02 0.18 1.5 1 1.82 -
[1] 刘庆兆. 脉冲辐射场诊断技术[M]. 北京: 科学出版社, 1994Liu Qingzhao. Pulse radiation field diagnostic technology[M]. Beijing: Science Press, 1994 [2] 李阳, 张艳红, 盛亮, 等. 不同厚度ST401中子能谱响应测量与分析[J]. 物理学报, 2024, 73: 232401 doi: 10.7498/aps.73.20241198Li Yang, Zhang Yanhong, Sheng Liang, et al. Measurement and analysis of neutron spectrum responses of ST401 scintillators with different thickness[J]. Acta Physica Sinica, 2024, 73: 232401 doi: 10.7498/aps.73.20241198 [3] 李波均, 朱学彬, 王立宗, 等. ST401塑料闪烁体中子探测效率研究[J]. 核电子学与探测技术, 2014, 34(12): 1520-1523Li Bojun, Zhu Xuebin, Wang Lizong, et al. Research on the neutron efficiency of plastic scintillator ST401[J]. Nuclear Electronics & Detection Technology, 2014, 34(12): 1520-1523 [4] 谷颖, 孙世峰, 陈昭熙, 等. 基于闪烁体阵列的双端读出快中子探测器及其轴向位置校准方法[J]. 现代应用物理, 2022, 13: 030203Gu Ying, Sun Shifeng, Chen Zhaoxi, et al. A fast neutron detector with dual-ended readout based on scintillator array and its axial position calibration method[J]. Modern Applied Physics, 2022, 13: 030203 [5] 张建福, 陈亮, 李宏云, 等. DPF装置脉冲中子测量技术研究[J]. 核技术, 2010, 33(10): 749-753Zhang Jianfu, Chen Liang, Li Hongyun, et al. Investigation of pulsed neutron measurements on the DPF device[J]. Nuclear Techniques, 2010, 33(10): 749-753 [6] 金鹏, 张春生, 欧阳晓平, 等. 高光产额SrI2: Eu2+晶体制备及其闪烁性能研究[J]. 现代应用物理, 2024, 15: 010202Jin Peng, Zhang Chunsheng, Ouyang Xiaoping, et al. Growth and scintillation properties of SrI2: Eu2+ crystal with high light yield[J]. Modern Applied Physics, 2024, 15: 010202 [7] Ruan Jinlu, Ouyang Xiaoping, Liu Bo, et al. Enhanced performance of a pulsed neutron detector by the plastic scintillator with a photonic crystal[J]. Review of Scientific Instruments, 2018, 89: 123306. doi: 10.1063/1.5048230 [8] Reichhart L, Akimov D Y, Araújo H M, et al. Quenching factor for low-energy nuclear recoils in a plastic scintillator[J]. Physical Review C, 2012, 85: 065801. [9] 郭兆言, 高泰, 肖金水, 等. 基于闪烁体探测器的稠密等离子体焦点装置脉冲中子测量[J]. 强激光与粒子束, 2025, 37: 044011Guo Zhaoyan, Gao Tai, Xiao Jinshui, et al. Pulse neutron measurement of dense plasma focus device based on scintillation detector[J]. High Power Laser and Particle Beams, 2025, 37: 044011 [10] 刘耀隆, 陈智, 黄有骏, 等. 堆外核探测器中子灵敏度计算模型研究[J]. 核动力工程, 2024, 45(3): 272-278Liu Yaolong, Chen Zhi, Huang Youjun, et al. Study on neutron sensitivity calculation model of ex-core neutron detector[J]. Nuclear Power Engineering, 2024, 45(3): 272-278 [11] Wu Zepeng, Jiang Xinbiao, Zhang Wenshou, et al. Monte Carlo simulation of neutron sensitivity of microfission chamber in neutron flux measurement[J]. Nuclear Science and Techniques, 2022, 33: 78. doi: 10.1007/s41365-022-01062-6 [12] 唐章奎, 杨高照, 王栋, 等. 强辐射本底下的DT脉冲中子测量技术[J]. 核电子学与探测技术, 2012, 32(12): 1383-1384,1431Tang Zhangkui, Yang Gaozhao, Wang Dong, et al. DT impulse neutron measuring method in strong radiation condition[J]. Nuclear Electronics & Detection Technology, 2012, 32(12): 1383-1384,1431 [13] 唐章奎, 杨高照, 李波均, 等. 几何因子对低脉冲辐射测量的影响[J]. 核电子学与探测技术, 2016, 36(5): 530-533Tang Zhangkui, Yang Gaozhao, Li Bojun, et al. The influence of geometry factors to low pulse radiation measurement[J]. Nuclear Electronics & Detection Technology, 2016, 36(5): 530-533 [14] 朱金辉, 左应红, 刘利, 等. 蒙特卡罗方法在核爆辐射环境模拟中的应用与发展[J]. 现代应用物理, 2023, 14: 030104Zhu Jinhui, Zuo Yinghong, Liu Li, et al. Application and development of Monte Carlo method in simulation of nuclear explosion radiation environments[J]. Modern Applied Physics, 2023, 14: 030104 [15] 陈亮, 刘金良, 刘林月, 等. 基于SiC的裂变靶室中子灵敏度标定技术[J]. 现代应用物理, 2018, 9: 020201Chen Liang, Liu Jinliang, Liu Linyue, et al. Calibration of neutron sensitivity in fission target chamber of SiC detector[J]. Modern Applied Physics, 2018, 9: 020201 [16] 李如荣, 郭洪生, 胡清元, 等. γ探测器中子灵敏度标定技术[J]. 原子核物理评论, 2010, 27(2): 178-181Li Rurong, Guo Hongsheng, Hu Qingyuan, et al. Calibration technique of neutron sensitivity for γ-ray detector[J]. Nuclear Physics Review, 2010, 27(2): 178-181 -