留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大尺寸塑料闪烁体近场中子灵敏度标定方法

程梓芸 易义成 李波均 郝帅 宋朝晖 李刚

程梓芸, 易义成, 李波均, 等. 大尺寸塑料闪烁体近场中子灵敏度标定方法[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250201
引用本文: 程梓芸, 易义成, 李波均, 等. 大尺寸塑料闪烁体近场中子灵敏度标定方法[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250201
Cheng Ziyun, Yi Yicheng, Li Bojun, et al. Calibration methodology for near-field neutron sensitivity of large-scale plastic scintillators[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250201
Citation: Cheng Ziyun, Yi Yicheng, Li Bojun, et al. Calibration methodology for near-field neutron sensitivity of large-scale plastic scintillators[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250201

大尺寸塑料闪烁体近场中子灵敏度标定方法

doi: 10.11884/HPLPB202537.250201
基金项目: 国家自然科学基金项目(12205239)
详细信息
    作者简介:

    程梓芸,chengziyun@nint.ac.cn

    通讯作者:

    易义成,yiyicheng@nint.ac.cn

  • 中图分类号: TL814

Calibration methodology for near-field neutron sensitivity of large-scale plastic scintillators

  • 摘要: 针对大尺寸塑料闪烁体(Φ100 mm×100 mm)在近场(<1 m)脉冲中子测量中因标定与测量几何差异导致的中子灵敏度偏差问题,本研究提出基于实验和蒙特卡洛模拟的双外推动态标定方法。建立蒙特卡洛模拟模型,量化距离对灵敏度的影响规律。模拟结果表明:当源距小于80 cm时,需要考虑距离对于中子灵敏度的影响,当源距缩短至20 cm时,中子灵敏度修正系数达到8.44%。通过近场实验分析,提出了一种散射本底外推方法,较为准确地测量了近场中子探测器的灵敏度,实验结果验证了理论模拟的准确性。研究建立的修正方法能够在平方反比定律不适用的条件下,有效降低传统单点标定法在近场测量中的系统偏差,扩展了中子探测器的测量范围,为脉冲堆瞬态诊断、聚变装置等强辐射场环境下的精确中子计量提供了新的技术途径。
  • 图  1  中子探测器结构示意图

    Figure  1.  Schematic diagram of neutron detector

    图  2  MCNP探测器前端探头模型

    Figure  2.  MCNP front-end probe model

    图  3  MCNP模拟不同距离反推值与模拟值的差异

    Figure  3.  The discrepancy between the extrapolated values and MCNP simulation results at different distances

    图  4  标定实验模型简化图

    Figure  4.  Simplified diagram of calibration experiment model

    图  5  中国原子能科学研究院E高压倍加器实验平台布局图

    Figure  5.  Layout diagram of the China Institute of Atomic Energy high-voltage multiplier experimental platform

    图  6  不同拟合曲线外推结果

    Figure  6.  Extrapolation results of different fitting curves

    表  1  MCNP模拟结果

    Table  1.   MCNP simulation results

    distance/cm proton deposited
    energy(Epro)
    electron deposited
    energy(Eelec)
    total deposited
    energy
    inverse-square-law-derived
    distance data
    relative
    deviation/%
    150 6.05E-04 2.59E-05 6.48E-04 6.53E-04 −0.73
    100(reference) 1.37E-03 5.91E-05 1.47E-03 1.47E-03 0
    80 2.15E-03 9.48E-05 2.31E-03 2.29E-03 0.54
    60 3.85E-03 1.74E-04 4.14E-03 4.08E-03 1.59
    40 7.77E-03 3.61E-04 8.37E-03 8.13E-03 3.01
    20 3.68E-02 1.80E-03 3.98E-02 3.67E-02 8.44
    下载: 导出CSV

    表  2  基准区散射系数实验结果

    Table  2.   Experimental results of scattering coefficients in reference region

    distance from crystal center /cm source neutron yield net signal/nA scattering coefficient
    106.9 2.62E+09 37.65 1.44E-08
    121.6 2.12E+09 24.75 1.17E-08
    137.7 2.17E+09 21.81 1.01E-08
    155.7 1.39E+09 12.47 8.97E-09
    202.6 2.01E+09 13.54 6.74E-09
    下载: 导出CSV

    表  3  MCNP模拟结果与实验结果对比

    Table  3.   Comparison between MCNP simulations and experimental results

    distance from crystal center /cm measured sensitivity measured deviation % simulated deviation % (simulated - measured)/%
    32.3 1.228E-11 5.09 4.78 −0.31
    41.1 1.203E-11 2.95 3.47 0.52
    75.8 1.171E-11 0.17 1.04 0.87
    112.2(Reference) 1.169E-11 0 0 0
    下载: 导出CSV

    表  4  拟合曲线在不同实验距离对应的不确定度

    Table  4.   Uncertainty distribution of fitting curves across experimental distances

    distance/cmstandard uncertainty of
    fitting curves
    output signals corresponding to
    experimental yields/nA
    direct irradiation signals corresponding to
    experimental yields/nA
    uncertainty components of
    fitting curves/%
    32.38.79×10−95.531245.300.44
    41.15.07×10−94.231000.700.42
    75.89.35×10−100.76279.050.27
    112.23.38×10−110.06300.040.02
    下载: 导出CSV

    表  5  不同实验距离对应的总不确定度

    Table  5.   The total uncertainty corresponding to different experimental distances

    distance/
    cm
    uncertainty components of
    fitting curves/%
    uncertainty components of
    distance measurement/%
    uncertainty components of
    neutron fluence rate monitoring/%
    uncertainty components of
    electrometer signal/%
    combined standard
    uncertainty(k=1)/%
    32.30.440.621.512.05
    41.10.420.481.511.97
    75.80.270.261.511.86
    112.20.020.181.511.82
    下载: 导出CSV
  • [1] 刘庆兆. 脉冲辐射场诊断技术[M]. 北京: 科学出版社, 1994

    Liu Qingzhao. Pulse radiation field diagnostic technology[M]. Beijing: Science Press, 1994
    [2] 李阳, 张艳红, 盛亮, 等. 不同厚度ST401中子能谱响应测量与分析[J]. 物理学报, 2024, 73: 232401 doi: 10.7498/aps.73.20241198

    Li Yang, Zhang Yanhong, Sheng Liang, et al. Measurement and analysis of neutron spectrum responses of ST401 scintillators with different thickness[J]. Acta Physica Sinica, 2024, 73: 232401 doi: 10.7498/aps.73.20241198
    [3] 李波均, 朱学彬, 王立宗, 等. ST401塑料闪烁体中子探测效率研究[J]. 核电子学与探测技术, 2014, 34(12): 1520-1523

    Li Bojun, Zhu Xuebin, Wang Lizong, et al. Research on the neutron efficiency of plastic scintillator ST401[J]. Nuclear Electronics & Detection Technology, 2014, 34(12): 1520-1523
    [4] 谷颖, 孙世峰, 陈昭熙, 等. 基于闪烁体阵列的双端读出快中子探测器及其轴向位置校准方法[J]. 现代应用物理, 2022, 13: 030203

    Gu Ying, Sun Shifeng, Chen Zhaoxi, et al. A fast neutron detector with dual-ended readout based on scintillator array and its axial position calibration method[J]. Modern Applied Physics, 2022, 13: 030203
    [5] 张建福, 陈亮, 李宏云, 等. DPF装置脉冲中子测量技术研究[J]. 核技术, 2010, 33(10): 749-753

    Zhang Jianfu, Chen Liang, Li Hongyun, et al. Investigation of pulsed neutron measurements on the DPF device[J]. Nuclear Techniques, 2010, 33(10): 749-753
    [6] 金鹏, 张春生, 欧阳晓平, 等. 高光产额SrI2: Eu2+晶体制备及其闪烁性能研究[J]. 现代应用物理, 2024, 15: 010202

    Jin Peng, Zhang Chunsheng, Ouyang Xiaoping, et al. Growth and scintillation properties of SrI2: Eu2+ crystal with high light yield[J]. Modern Applied Physics, 2024, 15: 010202
    [7] Ruan Jinlu, Ouyang Xiaoping, Liu Bo, et al. Enhanced performance of a pulsed neutron detector by the plastic scintillator with a photonic crystal[J]. Review of Scientific Instruments, 2018, 89: 123306. doi: 10.1063/1.5048230
    [8] Reichhart L, Akimov D Y, Araújo H M, et al. Quenching factor for low-energy nuclear recoils in a plastic scintillator[J]. Physical Review C, 2012, 85: 065801.
    [9] 郭兆言, 高泰, 肖金水, 等. 基于闪烁体探测器的稠密等离子体焦点装置脉冲中子测量[J]. 强激光与粒子束, 2025, 37: 044011

    Guo Zhaoyan, Gao Tai, Xiao Jinshui, et al. Pulse neutron measurement of dense plasma focus device based on scintillation detector[J]. High Power Laser and Particle Beams, 2025, 37: 044011
    [10] 刘耀隆, 陈智, 黄有骏, 等. 堆外核探测器中子灵敏度计算模型研究[J]. 核动力工程, 2024, 45(3): 272-278

    Liu Yaolong, Chen Zhi, Huang Youjun, et al. Study on neutron sensitivity calculation model of ex-core neutron detector[J]. Nuclear Power Engineering, 2024, 45(3): 272-278
    [11] Wu Zepeng, Jiang Xinbiao, Zhang Wenshou, et al. Monte Carlo simulation of neutron sensitivity of microfission chamber in neutron flux measurement[J]. Nuclear Science and Techniques, 2022, 33: 78. doi: 10.1007/s41365-022-01062-6
    [12] 唐章奎, 杨高照, 王栋, 等. 强辐射本底下的DT脉冲中子测量技术[J]. 核电子学与探测技术, 2012, 32(12): 1383-1384,1431

    Tang Zhangkui, Yang Gaozhao, Wang Dong, et al. DT impulse neutron measuring method in strong radiation condition[J]. Nuclear Electronics & Detection Technology, 2012, 32(12): 1383-1384,1431
    [13] 唐章奎, 杨高照, 李波均, 等. 几何因子对低脉冲辐射测量的影响[J]. 核电子学与探测技术, 2016, 36(5): 530-533

    Tang Zhangkui, Yang Gaozhao, Li Bojun, et al. The influence of geometry factors to low pulse radiation measurement[J]. Nuclear Electronics & Detection Technology, 2016, 36(5): 530-533
    [14] 朱金辉, 左应红, 刘利, 等. 蒙特卡罗方法在核爆辐射环境模拟中的应用与发展[J]. 现代应用物理, 2023, 14: 030104

    Zhu Jinhui, Zuo Yinghong, Liu Li, et al. Application and development of Monte Carlo method in simulation of nuclear explosion radiation environments[J]. Modern Applied Physics, 2023, 14: 030104
    [15] 陈亮, 刘金良, 刘林月, 等. 基于SiC的裂变靶室中子灵敏度标定技术[J]. 现代应用物理, 2018, 9: 020201

    Chen Liang, Liu Jinliang, Liu Linyue, et al. Calibration of neutron sensitivity in fission target chamber of SiC detector[J]. Modern Applied Physics, 2018, 9: 020201
    [16] 李如荣, 郭洪生, 胡清元, 等. γ探测器中子灵敏度标定技术[J]. 原子核物理评论, 2010, 27(2): 178-181

    Li Rurong, Guo Hongsheng, Hu Qingyuan, et al. Calibration technique of neutron sensitivity for γ-ray detector[J]. Nuclear Physics Review, 2010, 27(2): 178-181
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  10
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-07
  • 修回日期:  2025-08-28
  • 录用日期:  2025-08-22
  • 网络出版日期:  2025-09-09

目录

    /

    返回文章
    返回