留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面积对垂直NPN结构探测器直流X射线响应特性的影响

王晶 欧阳晓平 陈亮 王方宝 张雁霞 田耕 刘森

王晶, 欧阳晓平, 陈亮, 等. 面积对垂直NPN结构探测器直流X射线响应特性的影响[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250202
引用本文: 王晶, 欧阳晓平, 陈亮, 等. 面积对垂直NPN结构探测器直流X射线响应特性的影响[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250202
Wang Jing, Ouyang Xiaoping, Chen Liang, et al. Effect of area on X-ray response characteristics of vertical NPN detectors[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250202
Citation: Wang Jing, Ouyang Xiaoping, Chen Liang, et al. Effect of area on X-ray response characteristics of vertical NPN detectors[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250202

面积对垂直NPN结构探测器直流X射线响应特性的影响

doi: 10.11884/HPLPB202537.250202
基金项目: 国家自然科学基金青年科学基金项目(12305204)
详细信息
    作者简介:

    王 晶,tracy1622@126.com

  • 中图分类号: TL816

Effect of area on X-ray response characteristics of vertical NPN detectors

  • 摘要: 设计并制造了三种不同面积的双端SiC基NPN结构辐射探测器,并对其直流X射线响应特性进行了实验评估。实验结果表明,这些探测器在外加偏置电压和光伏电压的共同作用下工作,并存在四个拐点电压,将I-V特性曲线分为五个阶段。相比之下,在相同的直流X射线照射条件下,面积较大的探测器能够吸收更多X射线能量,从而产生更强的输出信号。面积较小的探测器在I-V特性曲线上显示出更高的拐点电压,表现出更强的耐压能力。此外,探测器的响应时间与其面积大小密切相关,面积越大,开关下降时间越长,1 cm×1 cm探测器比0.25 cm×0.25 cm探测器的90%~10%下降时间要多约12.2 ms。这些发现强调了在辐射探测器设计中考虑面积的重要性,并指出了优化这一参数以提高探测器性能的必要性。
  • 图  1  探测器结构和实物

    Figure  1.  Structure and photograph of detectors

    图  2  实验系统原理框图

    Figure  2.  Principle block diagram of experimental system

    图  3  不同灵敏面积探测器的暗电流随偏置电压的变化曲线

    Figure  3.  Variation curves of dark current with bias voltage for detectors of different areas

    图  4  不同管电流下0.5cm×0.5cm探测器直流X射线响应I-V曲线

    Figure  4.  I-Vcurves of DC X-ray response for a 0.5 cm×0.5cm detector under different tube currents

    图  5  无光照时不同偏压下探测器的电势、能带和电场变化

    Figure  5.  Potential,energy band,and electric field variations in the detector under different biases without illumination

    图  6  无光照和有光照下能带和电场的对照

    Figure  6.  comparisons of energy bands and electric fields without and with illuminations

    图  7  不同面积探测器直流X射线响应I-V曲线比照

    Figure  7.  Comparison of I-V Curves of DC X-ray Response for Detectors with Different Areas

    图  8  输出电流随X射线源管电流的变化曲线

    Figure  8.  Variation curve of output current with the tube current of X-ray source

    图  9  不同面积探测器开关特性比对

    Figure  9.  Comparison of switching characteristics of detectors with different areas

  • [1] Johns P M, Nino J C. Room temperature semiconductor detectors for nuclear security[J]. Journal of Applied Physics, 2019, 126: 040902. doi: 10.1063/1.5091805
    [2] McGregor D S, Hermon H. Room-temperature compound semiconductor radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 395(1): 101-124.
    [3] Muggleton A H F. Semiconductor devices for gamma ray, X ray and nuclear radiation detection[J]. Journal of Physics E: Scientific Instruments, 1972, 5(5): 390-404. doi: 10.1088/0022-3735/5/5/001
    [4] 苏兆锋, 孙江, 蔡丹, 等. 200 keV脉冲硬X射线源能谱测量技术[J]. 现代应用物理, 2022, 13: 030204 doi: 10.12061/j.issn.2095-6223.2022.030204

    Su Zhaofeng, Sun Jiang, Cai Dan, et al. Energy spectrum measurement for 200 keV pulsed hard X-ray source[J]. Modern Applied Physics, 2022, 13: 030204 doi: 10.12061/j.issn.2095-6223.2022.030204
    [5] Warburton R E, Intermite G, Myronov M, et al. Ge-on-Si single-photon avalanche diode detectors: design, modeling, fabrication, and characterization at wavelengths 1310 and 1550 nm[J]. IEEE Transactions on Electron Devices, 2013, 60(11): 3807-3813. doi: 10.1109/TED.2013.2282712
    [6] Kasap S, Frey J B, Belev G, et al. Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors[J]. Sensors, 2011, 11(5): 5112-5157. doi: 10.3390/s110505112
    [7] Yoo H, Lee I S, Jung S, et al. A review of phototransistors using metal oxide semiconductors: research progress and future directions[J]. Advanced Materials, 2021, 33: 2006091. doi: 10.1002/adma.202006091
    [8] Lutz G. Detectors with intrinsic amplification[M]//Lutz G. Semiconductor Radiation Detectors: Device Physics. Berlin: Springer, 2007: 239-258.
    [9] Bertuccio G, Eremeev I A, Mele F, et al. Current noise spectral density and excess noise of a silicon low-gain avalanche diode (LGAD)[J]. IEEE Transactions on Electron Devices, 2024, 71(10): 5845-5851. doi: 10.1109/TED.2024.3440961
    [10] Chen Xiufang, Yang Xianglong, Xie Xuejian, et al. Research progress of large size SiC single crystal materials and devices[J]. Light: Science & Applications, 2023, 12: 28.
    [11] Su Linlin, Zhou Dong, Lu Hai, et al. Recent progress of SiC UV single photon counting avalanche photodiodes[J]. Journal of Semiconductors, 2019, 40: 121802. doi: 10.1088/1674-4926/40/12/121802
    [12] Kimoto T. Material science and device physics in SiC technology for high-voltage power devices[J]. Japanese Journal of Applied Physics, 2015, 54: 040103. doi: 10.7567/JJAP.54.040103
    [13] 中国工程物理研究院核物理与化学研究所. SiC辐射探测器系统的研制与n/γ混合场实验[J]. 强激光与粒子束, 2020, 32: S10601.
    [14] Wang Jing, Chen Liang, Bai Song, et al. X-Ray detector with Internal Gain Based on a SiC npn structure[J]. IEEE Electron Device Letters, 2024, 45(11): 2142-2145. doi: 10.1109/LED.2024.3451623
    [15] Wang Jing, Zhou Leidang, Chen Liang, et al. X-ray performance of SiC NPN radiation detector[J]. Micromachines, 2025, 16: 2.
    [16] 王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2009

    Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. The parameter manual book of high-altitude nuclear explosion effects[M]. Beijing: Atomic Energy Press, 2009
    [17] Wang Jianguo, Liu Li, Zuo Yinghong, et al. Research progress in numerical simulation of environmental parameters generated by the high-altitude nuclear explosions[J]. IEEE Transactions on Nuclear Science, 2025, 72(3): 884-900. doi: 10.1109/TNS.2025.3530013
    [18] 张竞涵, 唐波, 夏惊涛, 等. 微通道板型X射线探测器的时间响应[J]. 现代应用物理, 2025, 16: 020201 doi: 10.12061/j.issn.2095-6223.202406007

    Zhang Jinghan, Tang Bo, Xia Jingtao, et al. Time response of a microchannel plate X-ray detector[J]. Modern Applied Physics, 2025, 16: 020201 doi: 10.12061/j.issn.2095-6223.202406007
    [19] 康明文, 杨海亮, 王刚, 等. Z箍缩X射线入射材料的能量沉积研究[J]. 现代应用物理, 2024, 15: 020207 doi: 10.12061/j.issn.2095-6223.2024.020207

    Kang Mingwen, Yang Hailiang, Wang Gang, et al. Energy deposition of Z-pinch generated X-ray in differrent materials[J]. Modern Applied Physics, 2024, 15: 020207 doi: 10.12061/j.issn.2095-6223.2024.020207
    [20] Chen Jiannan, Wang Jianguo, Tao Yinglong, et al. Simulation of SGEMP using particle-in-cell method based on conformal technique[J]. IEEE Transactions on Nuclear Science, 2019, 66(5): 820-826. doi: 10.1109/TNS.2019.2911933
  • 加载中
图(9)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  2
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-08
  • 修回日期:  2025-09-11
  • 录用日期:  2025-08-31
  • 网络出版日期:  2025-09-17

目录

    /

    返回文章
    返回