留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂电磁环境下无人机作战效能建模与仿真验证

嵇闰则 王柯 牛佳鑫 范贤栋

嵇闰则, 王柯, 牛佳鑫, 等. 复杂电磁环境下无人机作战效能建模与仿真验证[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250205
引用本文: 嵇闰则, 王柯, 牛佳鑫, 等. 复杂电磁环境下无人机作战效能建模与仿真验证[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250205
Ji Runze, Wang Ke, Niu Jiaxin, et al. Modeling the impact of complex electromagnetic environments on UAV combat effectiveness[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250205
Citation: Ji Runze, Wang Ke, Niu Jiaxin, et al. Modeling the impact of complex electromagnetic environments on UAV combat effectiveness[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250205

复杂电磁环境下无人机作战效能建模与仿真验证

doi: 10.11884/HPLPB202537.250205
详细信息
    作者简介:

    嵇闰则,jrz15651027996@126.com

  • 中图分类号: TP391.9

Modeling the impact of complex electromagnetic environments on UAV combat effectiveness

  • 摘要: 为分析复杂电磁环境对无人机作战效能的影响,建立“复杂度特征-子系统性能-作战能力”三层评估体系。首先区分电磁环境的复杂度特征为时间占用度、频谱占用度、空间占用度及信号密度,并采用层次分析法确定特征权重,其次分解出通信可靠性、导航精度等7项无人机子系统性能指标与任务能力、生存能力、响应能力及抗干扰能力4项作战能力,并建立三者的耦合关系模型,然后通过归一化处理与敏感系数聚合推导出作战效能量化公式,表明电磁复杂度与无人机作战效能呈显著负相关,最后基于MATLAB软件构建复杂电磁战场环境,对不同电磁环境下无人机的作战效能进行仿真,进一步论证结果,并证明相同电磁环境下抗干扰能力强的无人机作战效能更优秀。
  • 图  1  复杂电磁环境下无人机的效能评估指标体系

    Figure  1.  Index system for evaluation the effectiveness of UAVs in CEME

    图  2  电磁环境复杂度特征与无人机效能指标的耦合关系

    Figure  2.  Coupling relationships of Electromagnetic complexity features and UAV effectiveness metrics

    图  3  初始电磁环境复杂度下无人机作战效能的区域分布

    Figure  3.  Spatial distribution of UAV combat effectiveness under baseline electromagnetic complexity

    图  4  改变电磁环境复杂度后无人机作战效能的区域分布

    Figure  4.  Spatial distribution of UAV combat effectiveness under varied electromagnetic complexity

    图  5  改变最大可承受信号数量后无人机作战效能的区域分布

    Figure  5.  Spatial Distribution of UAV combat effectiveness under varied maximum tolerable signal count

    表  1  复杂电磁环境内辐射源的初始参数

    Table  1.   The initial parameters of the radiation sources in CEME

    No. working duration/h frequency/MHz power/dBW location/km bandwidth/MHz
    1 [20,22] 187 11 (56,−30) 20
    2 [5,17] 76 7 (−50,−38) 20
    3 [5,18] 195 5 (−26,−82) 30
    4 [6,22] 72 3 (−2,−90) 30
    5 [6,21] 73 11 (−50,42) 20
    6 [14,21] 178 5 (2,98) 20
    7 [13,22] 116 7 (94,22) 30
    8 [4,22] 181 9 (−58,10) 20
    9 [19,23] 200 5 (−54,−70) 30
    10 [16,19] 167 10 (−14,78) 30
    下载: 导出CSV

    表  2  无人机在复杂电磁环境下的作战能力分级标准

    Table  2.   Classification criteria for UAV combat capability in CEME

    classification of UAV operational zones combat capability value of UAVs color
    advantageous zone $ {{\mathrm{C}}\geqslant0.75 \text{β}} $ dark green
    controllable zone 0$ {.65\text{β} \leqslant {\mathrm{C}} < 0.75\text{β}} $ light green
    risky zone 0$ {.55\text{β} \leqslant {\mathrm{C}} < 0.65\text{β}} $ yellow
    dangerous zone $ {{\mathrm{C}} < 0.55\text{β}} $ red
    下载: 导出CSV

    表  3  复杂电磁环境内辐射源变化参数

    Table  3.   Variable parameters of the radiation sources in CEME

    No. working
    duration/h
    frequency/
    MHz
    power/
    dBW
    location/
    km
    1 [18,24] 167 13 (30,−30)
    2 [3,19] 96 9 (−30,−20)
    3 [3,20] 215 7 (−24,−42)
    4 [4,24] 52 5 (−2,−70)
    5 [4,23] 93 13 (−30,24)
    6 [12,23] 158 7 (0,48)
    7 [11,24] 136 9 (46,22)
    8 [2,24] 161 11 (−20,10)
    9 [15,23] 220 7 (−24,−30)
    10 [14,21] 127 12 (−14,60)
    下载: 导出CSV

    表  4  改变电磁环境复杂度后无人机作战效能区域占比

    Table  4.   Proportions distribution of UAV operational zones under varied electromagnetic complexity

    parameters of the
    radiation sources
    classification of UAV operational zones/%
    advantageous zone controllable zone risky zone dangerous zone
    time 17.03 63.67 18.72 0.58
    frequency 32.53 50.40 16.72 0.35
    power 9.19 48.44 40.48 1.88
    location 18.99 52.90 20.11 8.00
    下载: 导出CSV

    表  5  改变最大可承受信号数量后无人机作战效能区域占比

    Table  5.   Proportion distribution of UAV operational zones after adjusting maximum tolerable signal count

    maximum tolerable signal
    count for UAVs
    classification of UAV operational zones/%
    advantageous zone advantageous zone advantageous zone advantageous zone
    3个 17.03 41.68 23.95 17.34
    4个 17.03 63.67 18.19 1.11
    6个 42.48 49.25 8.04 0.23
    7个 42.48 53.59 3.92 0
    下载: 导出CSV
  • [1] 王汝群. 战场电磁环境[M]. 北京: 解放军出版社, 2006

    Wang Ruqun. Battle field electromagnetic environment[M]. Beijing: PLA Press, 2006
    [2] 宣源, 田晓凌, 程德胜, 等. 战场电磁环境对无人机系统的干扰分析[J]. 装备环境工程, 2008, 5(1): 99-102 doi: 10.3969/j.issn.1672-9242.2008.01.025

    Xuan Yuan, Tian Xiaoling, Cheng Desheng, et al. Analysis of the battle field electromagnetic interference on unmanned aerial vehicle system[J]. Equipment Environmental Engineering, 2008, 5(1): 99-102 doi: 10.3969/j.issn.1672-9242.2008.01.025
    [3] 钟科. 复杂电磁场对机载设备的干扰研究[D]. 西安: 西安电子科技大学, 2012

    Zhong Ke. The research on complex electromagnetic field interfereing the airborne equipment[D]. Xi’an: Xidian University, 2012
    [4] Zhang S, Li. Bit error rate degradation of UAV data links under pulsed electromagnetic interference[J]. IEEE Transactions on Electromagnetic. Compatibility, 2022, 64(5): 1423-1431. doi: 10.1109/TEMC.2022.3179676
    [5] Johnson A B, Smith R L, et al. GPS spoofing impact on UAV navigation in contested environments[J]. The Journal of Navigation, 2021, 75(3): 567-580.
    [6] Wang L, Zhou Q, et al. Electromagnetic pulse effects on infrared sensors for military UAVs[J]. Sensors and Actuators A: Physical, 2023, 344: 113701.
    [7] Johnson A B, Williams C D, Brown K L. Deep reinforcement learning for anti-jamming UAV communications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2): 1021-1035. doi: 10.1109/TAES.2021.3117073
    [8] Wang Jianjun, Liu Bin, et al. Spectrum conflict prediction model for UAV swarms in complex electromagnetic environments[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44: 226541.
    [9] Garcia M P, et al. Limitations of isolated subsystem analysis for UAV EM vulnerability assessment[J]. IEEE Aerosp. Electron Syst Mag, 2022, 37(4): 30-45. doi: 10.1109/MAES.2021.3052307
    [10] Chen Xiaolong, Zhang Hua, Li Wei. Qualitative vs quantitative approaches in UAV combat effectiveness evaluation[J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1129-1141.
    [11] 柯宏发, 张军奇, 祝冀鲁, 等. 电子装备作战试验电磁环境的逼真性评估[J]. 兵工学报, 2016, 37(4): 756-762 doi: 10.3969/j.issn.1000-1093.2016.04.026

    Ke Hongfa, Zhang Junqi, Zhu Jilu, et al. Fidelity evaluation of electromagnetic environment in operational tests of electronic equipment[J]. Acta Armamentarii, 2016, 37(4): 756-762 doi: 10.3969/j.issn.1000-1093.2016.04.026
    [12] 胡媛媛, 武云鹏, 丁玲, 等. 地面无人装备环境感知能力评价方法研究[J]. 火力与指挥控制, 2022, 47(2): 88-92 doi: 10.3969/j.issn.1002-0640.2022.02.015

    Hu Yuanyuan, Wu Yunpeng, Ding Ling, et al. Assessment method of environmental perception ability in unmanned-ground equipment[J]. Fire Control & Command Control, 2022, 47(2): 88-92 doi: 10.3969/j.issn.1002-0640.2022.02.015
    [13] 段继琨, 韩鹏. 基于相似理论的复杂电磁环境逼真度评估研究[J]. 舰船电子工程, 2020, 40(5): 184-188 doi: 10.3969/j.issn.1672-9730.2020.05.043

    Duan Jikun, Han Peng. Research on the evaluation of complex electromagnetic environment fidelity based on similitude theory[J]. Ship Electronic Engineering, 2020, 40(5): 184-188 doi: 10.3969/j.issn.1672-9730.2020.05.043
    [14] 王睿, 姜宁, 陈奇. 基于训练效果评估需求的战场电磁环境复杂度研究[J]. 舰船电子对抗, 2015, 38(4): 89-92

    Wang Rui, Jiang Ning, Chen Qi. Research into battlefield electromagnetic environment complexity based on evaluation requirement of training effect[J]. Shipboard Electronic Countermeasure, 2015, 38(4): 89-92
    [15] 金朝, 丁竑, 徐忠富, 等. 基于物元模型-AHP的战场电磁环境复杂度评估[J]. 舰船电子工程, 2010, 30(12): 165-169 doi: 10.3969/j.issn.1627-9730.2010.12.048

    Jin Zhao, Ding Hong, Xu Zhongfu, et al. Complexity evaluation method of battlefield electromagnetic environment based on matter-element model and AHP[J]. Ship Electronic Engineering, 2010, 30(12): 165-169 doi: 10.3969/j.issn.1627-9730.2010.12.048
    [16] 王东. 复杂电磁环境数字仿真系统研究[J]. 装备环境工程, 2018, 15(1): 100-104

    Wang Dong. Digital simulation system of complex electromagnetic environment[J]. Equipment Environmental Engineering, 2018, 15(1): 100-104
    [17] 马艳艳, 林强, 李旭辉. 基于层次分析法的电磁环境复杂度计算与评估[J]. 现代防御技术, 2024, 52(6): 17-23 doi: 10.3969/j.issn.1009-086x.2024.06.003

    Ma Yanyan, Lin Qiang, Li Xuhui. Calculation and evaluation method of complex electromagnetic environment based on analytic hierarchy process[J]. Modern Defense Technology, 2024, 52(6): 17-23 doi: 10.3969/j.issn.1009-086x.2024.06.003
    [18] 焦彦维, 侯德亭, 周东方, 等. 无人机在复杂电磁环境下的效能评估[J]. 强激光与粒子束, 2014, 26: 073201 doi: 10.11884/HPLPB201426.073201

    Jiao Yanwei, Hou Deting, Zhou Dongfang, et al. Efficiency evaluation of unmanned aerial vehicle in complex electromagnetic environment[J]. High Power Laser and Particle Beams, 2014, 26: 073201 doi: 10.11884/HPLPB201426.073201
    [19] 陈强, 魏光辉, 陈亚洲, 等. 3维电介质击穿模型在雷电防护系统评估试验中的应用[J]. 强激光与粒子束, 2011, 23(3): 721-726 doi: 10.3788/HPLPB20112303.0721

    Chen Qiang, Wei Guanghui, Chen Yazhou, et al. Application of three-dimensional dielectric breakdown model to lightning protection system evaluation[J]. High Power Laser and Particle Beams, 2011, 23(3): 721-726 doi: 10.3788/HPLPB20112303.0721
    [20] 郭宝录, 李朝荣, 乐洪宇. 国外无人机技术的发展动向与分析[J]. 舰船电子工程, 2005, 28(9): 46-49,112

    Guo Baolu, Li Chaorong, Le Hongyu. Development trend and analysis of the technology of the abroad UAV[J]. Ship Electronic Engineering, 2005, 28(9): 46-49,112
    [21] 马艳艳, 金宏斌, 李浩, 等. 改进粒子群算法在雷达组网优化布站中的应用[J]. 现代防御技术, 2020, 48(3): 104-112 doi: 10.3969/j.issn.1009-086x.2020.03.017

    Ma Yanyan, Jin Hongbin, Li Hao, et al. Application of improved PSO algorithm in radar-net deployment[J]. Modern Defense Technology, 2020, 48(3): 104-112 doi: 10.3969/j.issn.1009-086x.2020.03.017
    [22] Rappaport T S. Wireless communications: principles and practice[M]. Prentice Hall PTR, 1996.
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-10
  • 修回日期:  2025-09-02
  • 录用日期:  2025-08-21
  • 网络出版日期:  2025-09-13

目录

    /

    返回文章
    返回