Radiation source term analysis and shielding verification for beamline stations at the Hefei advanced light facility
-
摘要: 合肥先进光源作为国际领先的第四代同步辐射光源之一,在束流亮度和相干性方面实现了显著提升,同时也对辐射防护提出了更高要求。传统的辐射屏蔽设计方法主要基于前三代光源的辐射特性,难以满足新一代光源的辐射防护需求,尤其对Touschek效应诱发的固体轫致辐射评估存在明显不足。针对现有研究的局限性,以合肥先进光源的BL10光束线站作为研究对象,针对其复杂的光路结构和频繁切换的运行模式,构建了一个多物理场耦合的模拟分析框架。该框架通过ELEGANT模拟Touschek效应引起的束流损失,利用FLUKA评估辐射传输和能量沉积过程,并借助STAC8计算同步辐射剂量分布,系统分析了各类辐射源的贡献。研究结果表明,Touschek效应对四代光源光束线站的辐射贡献不可忽视,且不同线站间存在显著差异,应在辐射屏蔽设计中予以充分考虑。提出的方法已应用于合肥先进光源光束线站的辐射屏蔽设计与验证,也为新一代光源的辐射防护研究提供了重要参考。Abstract:
Background The Hefei Advanced Light Facility (HALF), as one of the world’s most advanced fourth-generation synchrotron radiation sources, has achieved remarkable improvements in beam brightness and coherence. However, these advances impose stricter requirements on radiation protection, and traditional shielding methods developed for third-generation facilities are insufficient, particularly in accounting for solid bremsstrahlung induced by the Touschek effect.Purpose This study aims to establish a comprehensive framework for evaluating radiation sources at HALF beamline stations and to provide a reliable basis for shielding design.Methods Taking the BL10 beamline station as the case study, a multi-physics coupled simulation approach was developed: ELEGANT was used to model Touschek-induced beam losses, FLUKA was employed to simulate bremsstrahlung transport and energy deposition, and STAC8 was applied to calculate synchrotron radiation dose distributions.Results The results indicate that the Touschek effect contributes significantly to overall radiation levels in fourth-generation light sources and cannot be neglected in shielding assessments. Moreover, the integrated framework enables systematic analysis of multiple radiation sources under complex geometry and operational transitions.Conclusions The proposed method has been successfully applied to the radiation assessment and shielding design verification of HALF beamline stations, and it also provides a valuable reference for radiation protection studies in new-generation synchrotron facilities.-
Key words:
- HALF /
- beamline station /
- FLUKA /
- Touschek effect /
- bremsstrahlung
-
表 1 插入件参数
Table 1. Insertion device parameters
vacuum pressure limit/Pa length/m gap/mm number of magnetic periods magnetic field strength/T magnetic period length/cm 2×10−7 4.2 6 108 0.99 3.82 表 2 残余气体成分
Table 2. Composition of residual gas
residual gas atomic number mass fraction/% H2 2 67 H2O 10 3 CO 14 22 CO2 22 8 表 3 准直器与安全光闸设计
Table 3. Collimator and safety shutter design
distance to the source/m material aperture/mm collimator 23.83 lead 15×15 collimator 33.15 lead 15×15 safety shutter 36.85 W-Fe-Ni alloy − collimator 37.15 W-Fe-Ni alloy 15×15 collimator 43.4 lead 15×15 collimator 46.7 lead 15×15 表 4 各棚屋推荐的铅屏蔽厚度及其外部最大剂量率
Table 4. Lead shielding recommendations and external dose rates for hutches
shielding thickness/mm dose rate/(μSv·h−1) total solid bremsstrahlung gas bremsstrahlung synchrotron north wall of FOE 4 0.241 0.161 0.054 0 south wall of FOE 2 0.285 0.210 0.075 0 roof of FOE 0 0.283 0.193 0.071 0.019 downstream end wall of FOE 40 0.140 0.104 0.036 0 north wall of EH 0 0.126 0.059 0.035 0.032 south wall of EH 4 0.105 0.061 0.044 0 roof of EH 0 0.084 0.031 0.037 0.016 downstream end wall of EH 45 0.067 0.037 0.030 0 -
[1] 白正贺, 刘刚文, 何天龙, 等. 合肥先进光源储存环初步物理设计[J]. 强激光与粒子束, 2022, 34: 104003 doi: 10.11884/HPLPB202234.220137Bai Zhenghe, Liu Gangwen, He Tianlong, et al. Preliminary physics design of the Hefei advanced light facility storage ring[J]. High Power Laser and Particle Beams, 2022, 34: 104003 doi: 10.11884/HPLPB202234.220137 [2] Liu Pingcheng, Liu Qiongyao, Ma Zhongjian, et al. Radiation shielding for the first optics enclosure at the high energy photon source beamlines[J]. Radiation Detection Technology and Methods, 2021, 5(2): 168-173. doi: 10.1007/s41605-021-00249-6 [3] 徐加强, 夏晓彬, 盛尹祥子, 等. 上海光源光束线站BL18U轫致辐射剂量的计算与测量[J]. 核技术, 2014, 37: 070101 doi: 10.11889/j.0253-3219.2014.hjs.37.070101Xu Jiaqiang, Xia Xiaobin, Sheng Yinxiangzi, et al. Dose calculation and measurement for bremsstrahlung at BL18U beamline of SSRF[J]. Nuclear Techniques, 2014, 37: 070101 doi: 10.11889/j.0253-3219.2014.hjs.37.070101 [4] Devienne A, Aymerich N, García-Fusté M J, et al. A comparative radiation study at ALBA synchrotron facility between Monte Carlo modeling and radiation monitors dosimetry measurements[J]. Radiation Physics and Chemistry, 2015, 116: 365-367. doi: 10.1016/j.radphyschem.2015.05.018 [5] Ahmed A S, Benmerrouche M, Cubbon G. Monte Carlo simulation study to calculate radiation dose under beam-loss scenarios in Top-up operation mode for HXMA beamline at Canadian Light Source[J]. Radiation Measurements, 2015, 74: 31-38. doi: 10.1016/j.radmeas.2015.01.009 [6] Devienne A, García-Fusté M J. Shielding calculations for the design of new beamlines at ALBA synchrotron[J]. Radiation Physics and Chemistry, 2020, 171: 108759. doi: 10.1016/j.radphyschem.2020.108759 [7] 吴冠原, 王勇. NSRL电子储存环超高真空系统残余气体分析[J]. 真空, 1999(6): 31-34Wu Guanyuan, Wang Yong. Residual gas analysis of UHV system of electron storage ring in NSRL[J]. Vacuum-Vacuum Technology and Material, 1999(6): 31-34 [8] Le Duff J. Single and multiple Touschek effect[R]. LAL-RT-88-08, 1995. [9] Rindi A. Gas bremsstrahlung from electron storage rings[J]. Health Physics, 1982, 42(2): 187-193. doi: 10.1097/00004032-198202000-00009 [10] Borland M. elegant: a flexible SDDS-compliant code for accelerator simulation[R]. LS-287, 2000. [11] Ahdida C, Bozzato D, Calzolari D, et al. New capabilities of the FLUKA multi-purpose code[J]. Frontiers in Physics, 2022, 9: 788253. doi: 10.3389/fphy.2021.788253 [12] Battistoni G, Boehlen T, Cerutti F, et al. Overview of the FLUKA code[J]. Annals of Nuclear Energy, 2015, 82: 10-18. doi: 10.1016/j.anucene.2014.11.007 [13] Xu Jiaqiang, Xia Xiaobin, Sheng Yinxiangzi, et al. Dose rate distribution of photoneutrons in an ID beamline of SSRF: simulations and measurements[J]. Nuclear Science and Techniques, 2014, 25: 050101. [14] Kramer S L, Ghosh V J, Breitfeller M, et al. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 835: 13-33. [15] Asano Y, Sasamoto N. Development of shielding design code for synchrotron radiation beam line[J]. Radiation Physics and Chemistry, 1994, 44(1/2): 133-137. [16] Liu J C, Fasso A, Prinz A, et al. Comparison of synchrotron radiation calculations between analytical codes (STAC8, PHOTON) and Monte Carlo codes (FLUKA, EGS4)[J]. Radiation Protection Dosimetry, 2005, 116(1/4): 658-661. -