留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合肥先进光源光束线站辐射源项分析与屏蔽设计验证

陈家铎 蒋诗平 赵扬 杨鹏辉 王琳

陈家铎, 蒋诗平, 赵扬, 等. 合肥先进光源光束线站辐射源项分析与屏蔽设计验证[J]. 强激光与粒子束, 2025, 37: 106031. doi: 10.11884/HPLPB202537.250207
引用本文: 陈家铎, 蒋诗平, 赵扬, 等. 合肥先进光源光束线站辐射源项分析与屏蔽设计验证[J]. 强激光与粒子束, 2025, 37: 106031. doi: 10.11884/HPLPB202537.250207
Chen Jiaduo, Jiang Shiping, Zhao Yang, et al. Radiation source term analysis and shielding verification for beamline stations at the Hefei advanced light facility[J]. High Power Laser and Particle Beams, 2025, 37: 106031. doi: 10.11884/HPLPB202537.250207
Citation: Chen Jiaduo, Jiang Shiping, Zhao Yang, et al. Radiation source term analysis and shielding verification for beamline stations at the Hefei advanced light facility[J]. High Power Laser and Particle Beams, 2025, 37: 106031. doi: 10.11884/HPLPB202537.250207

合肥先进光源光束线站辐射源项分析与屏蔽设计验证

doi: 10.11884/HPLPB202537.250207
基金项目: 国家自然科学基金项目(12405173)
详细信息
    作者简介:

    陈家铎,cjd0013@mail.ustc.edu.cn

    通讯作者:

    蒋诗平,spjiang@ustc.edu.cn

  • 中图分类号: TL72

Radiation source term analysis and shielding verification for beamline stations at the Hefei advanced light facility

  • 摘要: 合肥先进光源作为国际领先的第四代同步辐射光源之一,在束流亮度和相干性方面实现了显著提升,同时也对辐射防护提出了更高要求。传统的辐射屏蔽设计方法主要基于前三代光源的辐射特性,难以满足新一代光源的辐射防护需求,尤其对Touschek效应诱发的固体轫致辐射评估存在明显不足。针对现有研究的局限性,以合肥先进光源的BL10光束线站作为研究对象,针对其复杂的光路结构和频繁切换的运行模式,构建了一个多物理场耦合的模拟分析框架。该框架通过ELEGANT模拟Touschek效应引起的束流损失,利用FLUKA评估辐射传输和能量沉积过程,并借助STAC8计算同步辐射剂量分布,系统分析了各类辐射源的贡献。研究结果表明,Touschek效应对四代光源光束线站的辐射贡献不可忽视,且不同线站间存在显著差异,应在辐射屏蔽设计中予以充分考虑。提出的方法已应用于合肥先进光源光束线站的辐射屏蔽设计与验证,也为新一代光源的辐射防护研究提供了重要参考。
  • 图  1  光束线站辐射屏蔽设计流程图

    Figure  1.  Radiation shielding design workflow for the beamline station

    图  2  储存环的几何结构

    Figure  2.  Layout of storage ring

    图  3  光束线站布局图

    Figure  3.  Layout of the beamline station

    图  4  直线节内损失电子的位置、方向和能量分布

    Figure  4.  Position, direction and energy distributions of the lost electrons in the straight sections

    图  5  棚屋的几何建模

    Figure  5.  Geometry model of the hutches

    图  6  进入FOE的轫致辐射粒子的能谱分布、空间分布及角度分布

    Figure  6.  Energy spectrum, spatial distribution and angular distributions of bremsstrahlung particles entering the FOE

    图  7  三种模式的轫致辐射剂量率分布图

    Figure  7.  Bremsstrahlung dose rate distributions under different modes

    图  8  短直线节中损失电子的位置、方向和能量分布

    Figure  8.  Position, direction and energy distributions of the lost electrons in the short straight sections

    表  1  插入件参数

    Table  1.   Insertion device parameters

    vacuum pressure limit/Palength/mgap/mmnumber of magnetic periodsmagnetic field strength/Tmagnetic period length/cm
    2×10−74.261080.993.82
    下载: 导出CSV

    表  2  残余气体成分

    Table  2.   Composition of residual gas

    residual gas atomic number mass fraction/%
    H2 2 67
    H2O 10 3
    CO 14 22
    CO2 22 8
    下载: 导出CSV

    表  3  准直器与安全光闸设计

    Table  3.   Collimator and safety shutter design

    distance to the source/m material aperture/mm
    collimator 23.83 lead 15×15
    collimator 33.15 lead 15×15
    safety shutter 36.85 W-Fe-Ni alloy
    collimator 37.15 W-Fe-Ni alloy 15×15
    collimator 43.4 lead 15×15
    collimator 46.7 lead 15×15
    下载: 导出CSV

    表  4  各棚屋推荐的铅屏蔽厚度及其外部最大剂量率

    Table  4.   Lead shielding recommendations and external dose rates for hutches

    shielding thickness/mm dose rate/(μSv·h−1)
    total solid bremsstrahlung gas bremsstrahlung synchrotron
    north wall of FOE 4 0.241 0.161 0.054 0
    south wall of FOE 2 0.285 0.210 0.075 0
    roof of FOE 0 0.283 0.193 0.071 0.019
    downstream end wall of FOE 40 0.140 0.104 0.036 0
    north wall of EH 0 0.126 0.059 0.035 0.032
    south wall of EH 4 0.105 0.061 0.044 0
    roof of EH 0 0.084 0.031 0.037 0.016
    downstream end wall of EH 45 0.067 0.037 0.030 0
    下载: 导出CSV
  • [1] 白正贺, 刘刚文, 何天龙, 等. 合肥先进光源储存环初步物理设计[J]. 强激光与粒子束, 2022, 34: 104003 doi: 10.11884/HPLPB202234.220137

    Bai Zhenghe, Liu Gangwen, He Tianlong, et al. Preliminary physics design of the Hefei advanced light facility storage ring[J]. High Power Laser and Particle Beams, 2022, 34: 104003 doi: 10.11884/HPLPB202234.220137
    [2] Liu Pingcheng, Liu Qiongyao, Ma Zhongjian, et al. Radiation shielding for the first optics enclosure at the high energy photon source beamlines[J]. Radiation Detection Technology and Methods, 2021, 5(2): 168-173. doi: 10.1007/s41605-021-00249-6
    [3] 徐加强, 夏晓彬, 盛尹祥子, 等. 上海光源光束线站BL18U轫致辐射剂量的计算与测量[J]. 核技术, 2014, 37: 070101 doi: 10.11889/j.0253-3219.2014.hjs.37.070101

    Xu Jiaqiang, Xia Xiaobin, Sheng Yinxiangzi, et al. Dose calculation and measurement for bremsstrahlung at BL18U beamline of SSRF[J]. Nuclear Techniques, 2014, 37: 070101 doi: 10.11889/j.0253-3219.2014.hjs.37.070101
    [4] Devienne A, Aymerich N, García-Fusté M J, et al. A comparative radiation study at ALBA synchrotron facility between Monte Carlo modeling and radiation monitors dosimetry measurements[J]. Radiation Physics and Chemistry, 2015, 116: 365-367. doi: 10.1016/j.radphyschem.2015.05.018
    [5] Ahmed A S, Benmerrouche M, Cubbon G. Monte Carlo simulation study to calculate radiation dose under beam-loss scenarios in Top-up operation mode for HXMA beamline at Canadian Light Source[J]. Radiation Measurements, 2015, 74: 31-38. doi: 10.1016/j.radmeas.2015.01.009
    [6] Devienne A, García-Fusté M J. Shielding calculations for the design of new beamlines at ALBA synchrotron[J]. Radiation Physics and Chemistry, 2020, 171: 108759. doi: 10.1016/j.radphyschem.2020.108759
    [7] 吴冠原, 王勇. NSRL电子储存环超高真空系统残余气体分析[J]. 真空, 1999(6): 31-34

    Wu Guanyuan, Wang Yong. Residual gas analysis of UHV system of electron storage ring in NSRL[J]. Vacuum-Vacuum Technology and Material, 1999(6): 31-34
    [8] Le Duff J. Single and multiple Touschek effect[R]. LAL-RT-88-08, 1995.
    [9] Rindi A. Gas bremsstrahlung from electron storage rings[J]. Health Physics, 1982, 42(2): 187-193. doi: 10.1097/00004032-198202000-00009
    [10] Borland M. elegant: a flexible SDDS-compliant code for accelerator simulation[R]. LS-287, 2000.
    [11] Ahdida C, Bozzato D, Calzolari D, et al. New capabilities of the FLUKA multi-purpose code[J]. Frontiers in Physics, 2022, 9: 788253. doi: 10.3389/fphy.2021.788253
    [12] Battistoni G, Boehlen T, Cerutti F, et al. Overview of the FLUKA code[J]. Annals of Nuclear Energy, 2015, 82: 10-18. doi: 10.1016/j.anucene.2014.11.007
    [13] Xu Jiaqiang, Xia Xiaobin, Sheng Yinxiangzi, et al. Dose rate distribution of photoneutrons in an ID beamline of SSRF: simulations and measurements[J]. Nuclear Science and Techniques, 2014, 25: 050101.
    [14] Kramer S L, Ghosh V J, Breitfeller M, et al. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 835: 13-33.
    [15] Asano Y, Sasamoto N. Development of shielding design code for synchrotron radiation beam line[J]. Radiation Physics and Chemistry, 1994, 44(1/2): 133-137.
    [16] Liu J C, Fasso A, Prinz A, et al. Comparison of synchrotron radiation calculations between analytical codes (STAC8, PHOTON) and Monte Carlo codes (FLUKA, EGS4)[J]. Radiation Protection Dosimetry, 2005, 116(1/4): 658-661.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  28
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-13
  • 修回日期:  2025-09-15
  • 录用日期:  2025-09-15
  • 网络出版日期:  2025-09-19
  • 刊出日期:  2025-10-15

目录

    /

    返回文章
    返回