留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低能强流负氢离子束与补偿气体相互作用的影响机制研究

朱睿 刘彤 王百川 闫逸花 王敏文 杨业 赵铭彤 叶文博 拓明泽 王忠明

朱睿, 刘彤, 王百川, 等. 低能强流负氢离子束与补偿气体相互作用的影响机制研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250208
引用本文: 朱睿, 刘彤, 王百川, 等. 低能强流负氢离子束与补偿气体相互作用的影响机制研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250208
Zhu Rui, Liu Tong, Wang Baichuan, et al. Investigation of impact mechanisms in low-energy high- current H− beam interactions with compensation gases[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250208
Citation: Zhu Rui, Liu Tong, Wang Baichuan, et al. Investigation of impact mechanisms in low-energy high- current H beam interactions with compensation gases[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250208

低能强流负氢离子束与补偿气体相互作用的影响机制研究

doi: 10.11884/HPLPB202537.250208
基金项目: 国家自然科学基金项目(12575158)
详细信息
    作者简介:

    王忠明,wangzhongming@nint.ac.c

  • 中图分类号: TL53

Investigation of impact mechanisms in low-energy high- current H beam interactions with compensation gases

  • 摘要: 空间电荷效应是制约强流离子束稳定传输的主要因素,主动馈入补偿气体被认为是一种能够抑制空间电荷效应的有效手段。但在强流负氢离子加速器中,负氢离子与补偿气体的作用机制十分复杂,存在多种互相竞争的物理过程。本研究通过数值模拟与实验测量,探究了负氢粒子与补偿气体在低能束流传输线中的相互作用机制。通过基于PIC方法的仿真程序,构建了包含电离反应、电子剥离反应和弹性碰撞散射等物理过程的三维仿真模型,研究了补偿气体为氮气和氩气时空间电荷补偿效应随气压、气体种类的变化对束流参数的影响规律。研究结果表明, 对负氢束流进行空间电荷补偿研究时,补偿气体对束流的散射与剥离效应不可忽略。
  • 图  1  XiPAF-LEBT结构示意图[17]

    Figure  1.  XiPAF-LEBT structure diagram[17]

    图  2  未注入气体时发射度仪处束流相空间分布

    Figure  2.  Phase distribution of beam without gas injection

    图  3  发射度仪处束流发射度与气压的关系(实验)

    Figure  3.  Relationship between beam emittance and air pressure at the LEBT exit (experiment)

    图  4  LEBT出口处束流流强与气压的关系(实验)

    Figure  4.  Relationship between beam current and air pressure at the LEBT exit (experiment)

    图  5  发射度仪处束流发射度随时间的变化曲线($1 \times {{10}}^{{-3}} $ Pa H2)

    Figure  5.  Beam emittance at emittance meter versus time ($ 1 \times {{10}}^{{-3}} $ Pa H2)

    图  6  $ { \lambda } $的倒数与气压的关系(H2)

    Figure  6.  Relationship between the reciprocal of the factor $ { \lambda } $ and air pressure (H2)

    图  7  补偿后发射度与气压的关系(弹性散射:实线;无弹性散射:虚线)

    Figure  7.  Compensated beam emittance versus gas pressure (elastic scattering: solid curve; inelastic scattering omitted: dashed curve)

    图  8  LEBT出口处束流流强与气压的关系

    Figure  8.  Beam current at LEBT exit versus gas pressure

    表  1  模拟中采用的LEBT入口束流参数

    Table  1.   Beam parameters at LEBT entrance used in simulation

    voltage/kV peak beam current/mA normalized RMS emittance/(mm∙mrad) α β/(mm∙mrad−1)
    50 5 0.2π 2.895 1 0.043 8
    下载: 导出CSV
  • [1] 夏慧琴, 刘纯亮. 束流传输原理[M]. 西安: 西安交通大学出版社, 1991

    Xia Huiqin, Liu Chunliang. Beam transmission theory[M]. Xi'an: Xi'an Jiaotong University Press, 1991
    [2] Valerio-Lizarraga C A. Emittance growth due to space charge compensation and beam intensity instabilities in negative ion beams[J]. Physical Review Accelerators and Beams, 2018, 21: 030101. doi: 10.1103/PhysRevAccelBeams.21.030101
    [3] Gabovich M D, Katsubo L P, Soloshenko I A. Self-decompensation of a stable quasi-neutral ion beam by coulomb collisions[J]. Fizika Plazmy, 1975, 1(2): 304-308.
    [4] Gabovich M D. Ion-beam plasma and the propagation of intense compensated ion beams[J]. Soviet Physics Uspekhi, 1977, 20(2): 134-148. doi: 10.1070/PU1977v020n02ABEH005331
    [5] Soloshenko I A. Problems of intense negative ion beam transport (invited)[J]. Review of Scientific Instruments, 2004, 75(5): 1694-1698. doi: 10.1063/1.1695608
    [6] 彭士香, 吕鹏南, 任海涛, 等. 低能强流离子束空间电荷补偿的研究[C]//2010全国荷电粒子源、粒子束学术会议论文集. 2010: 58-63

    Peng Shixiang, Lyu Pengnan, Ren Haitao, et al. Research of space charge compensation in low energy high intensity ion beam[C]//Proceedings of 2010 National Conference on Charged Particle Sources and Beams. 2010: 58-63
    [7] 肖仁珍. 相对论返波管研究进展[J]. 现代应用物理, 2022, 13: 020101 doi: 10.12061/j.issn.2095-6223.2022.020101

    Xiao Renzhen. Research progress of relativistic backward wave oscillator[J]. Modern Applied Physics, 2022, 13: 020101 doi: 10.12061/j.issn.2095-6223.2022.020101
    [8] 陈再高, 史雪婷, 王建国, 等. 基于多层次深度神经网络的相对论返波管优化技术[J]. 现代应用物理, 2025, 16: 011315 doi: 10.12061/j.issn.2095-6223.202412010

    Chen Zaigao, Shi Xueting, Wang Jianguo, et al. Optimization method of relativistic backward wave oscillator based on multi-level deep neural network[J]. Modern Applied Physics, 2025, 16: 011315 doi: 10.12061/j.issn.2095-6223.202412010
    [9] 李小泽, 王建国, 童长江, 等. 充填不同气体相对论返波管特性的PIC-MCC模拟[J]. 物理学报, 2008, 57(7): 4613-4622 doi: 10.7498/aps.57.4613

    Li Xiaoze, Wang Jianguo, Tong Changjiang, et al. PIC-MCC simulations on characteristics of RBWO filled with different gases[J]. Acta Physica Sinica, 2008, 57(7): 4613-4622 doi: 10.7498/aps.57.4613
    [10] Tan Biao, Wu Qi, Yang Yao, et al. Preliminary measurement of space charge neutralization level for proton beam[J]. Nuclear Physics Review, 2016, 33(1): 36-40.
    [11] Valerio-Lizarraga C A, Leon-Monzon I, Scrivens R. Negative ion beam space charge compensation by residual gas[J]. Physical Review Special Topics-Accelerators and Beams, 2015, 18: 080101. doi: 10.1103/PhysRevSTAB.18.080101
    [12] 王忠明, 王敏文, 闫逸花, 等. 西安200 MeV质子应用装置开放运行情况及下一步升级改造计划[J]. 现代应用物理, 2024, 15: 040402 doi: 10.12061/j.issn.2095-6223.2024.040402

    Wang Zhongming, Wang Minwen, Yan Yihua, et al. Current status and upgrade plan of Xi'an 200 MeV proton application facility[J]. Modern Applied Physics, 2024, 15: 040402 doi: 10.12061/j.issn.2095-6223.2024.040402
    [13] Chung M, Shiltsev V, Prost L. Space-charge compensation for high-intensity linear and circular accelerators at Fermilab[R]. Batavia: Fermi National Accelerator Laboratory, 2013.
    [14] Sherman J, Pitcher E, Stevens R, et al. H beam neutralization measurements in a solenoidal beam transport system[J]. AIP Conference Proceedings, 1992, 287(1): 686-694.
    [15] Reiser M. Theory and design of charged particle beams[M]. 2nd ed. Weinheim: Wiley-VCH, 2008.
    [16] Friedman A, Grote D P, Haber I. Three-dimensional particle simulation of heavy-ion fusion beams[J]. Physics of Fluids B: Plasma Physics, 1992, 4(7): 2203-2210. doi: 10.1063/1.860024
    [17] 王百川, 王忠明, 刘卧龙, 等. 西安200 MeV质子应用装置负氢离子源及低能束流传输线实验研究[J]. 现代应用物理, 2021, 12: 030401 doi: 10.12061/j.issn.2095-6223.2021.030402

    Wang Baichuan, Wang Zhongming, Liu Wolong, et al. Experimental study on H ion source and low energy beam transport line of Xi'an 200 MeV proton application facility[J]. Modern Applied Physics, 2021, 12: 030401 doi: 10.12061/j.issn.2095-6223.2021.030402
    [18] Chauvin N, Delferrière O, Duperrier R, et al. Transport of intense ion beams and space charge compensation issues in low energy beam lines (invited)[J]. Review of Scientific Instruments, 2012, 83: 02B320. doi: 10.1063/1.3678658
    [19] Easton M J, Li Haipeng, Wang Zhi, et al. Simulations of particle interactions in a high-current RFQ[J]. Journal of Instrumentation, 2019, 14: T02003. doi: 10.1088/1748-0221/14/02/T02003
    [20] Benisma A, Duperrier R, Uriot D, et al. A space charge compensation study of low energy hydrogen ion beams[C]//Proceedings of the 2005 Particle Accelerator Conference. 2005: 2947-2949.
    [21] Benismail A, Duperrier R, Uriot D, et al. Space charge compensation studies of hydrogen ion beams in a drift section[J]. Physical Review Special Topics-Accelerators and Beams, 2007, 10: 070101. doi: 10.1103/PhysRevSTAB.10.070101
    [22] Zhang A L, Peng S X, Ren H T, et al. Study on space charge compensation in negative hydrogen ion beam[J]. Review of Scientific Instruments, 2016, 87: 02B915. doi: 10.1063/1.4932557
    [23] Noll D, Droba M, Meusel O, et al. The particle-in-cell code bender and its application to non-relativistic beam transport[C]//Proceedings of HB2014. 2014: 304-308.
    [24] Chancé A, Chauvin N. Simulation of the extraction and transport of a beam from the SILHI source with the warp code[C]//Proceedings of the 5th International Particle Accelerator Conference. 2014: 385-387.
    [25] Grote D P, Friedman A, Haber I, et al. New developments in WARP: progress toward end-to-end simulation[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 415(1/2): 428-432.
    [26] Barnett C F, Ray J A, Ricci E, et al. Atomic data for controlled fusion research[R]. Oak Ridge: Oak Ridge National Laboratory, 1977.
    [27] Winklehner D, Leitner D. A space charge compensation model for positive DC ion beams[J]. Journal of Instrumentation, 2015, 10: T10006. doi: 10.1088/1748-0221/10/10/T10006
    [28] Lund S M, Kikuchi T, Davidson R C. Generation of initial kinetic distributions for simulation of long-pulse charged particle beams with high space-charge intensity[J]. Physical Review Special Topics-Accelerators and Beams, 2009, 12: 114801. doi: 10.1103/PhysRevSTAB.12.114801
    [29] Ji Qing, Grote D, Staples J, et al. Beam dynamics studies of H beam chopping in a LEBT for Project X[C]//Proceedings of HB2012. 2012: 546-549.
    [30] Rudd M E. Energy and angular distributions of secondary electrons from 5-100-keV-proton collisions with hydrogen and nitrogen molecules[J]. Physical Review A, 1979, 20(3): 787-796. doi: 10.1103/PhysRevA.20.787
    [31] Jackson J D. Classical electrodynamics[M]. 3rd ed. New York: Wiley, 1999: 5.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  5
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-13
  • 修回日期:  2025-09-06
  • 录用日期:  2025-09-02
  • 网络出版日期:  2025-09-13

目录

    /

    返回文章
    返回