留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微秒脉冲下云母电容的寿命特性

刘世飞 张建德 张自成 张昊冉 邱旭东 刘智 李锐

刘世飞, 张建德, 张自成, 等. 微秒脉冲下云母电容的寿命特性[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250210
引用本文: 刘世飞, 张建德, 张自成, 等. 微秒脉冲下云母电容的寿命特性[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250210
Liu Shifei, Zhang Jiande, Zhang Zicheng, et al. Lifetime characteristics of mica capacitor under microsecond pulse[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250210
Citation: Liu Shifei, Zhang Jiande, Zhang Zicheng, et al. Lifetime characteristics of mica capacitor under microsecond pulse[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250210

微秒脉冲下云母电容的寿命特性

doi: 10.11884/HPLPB202537.250210
基金项目: 高功率微波驱动源技术研究创新团队项目(ZCXTD202303)
详细信息
    作者简介:

    刘世飞,liushifei@nint.ac.cn

  • 中图分类号: TM214

Lifetime characteristics of mica capacitor under microsecond pulse

  • 摘要: 近年来,快速发展的卷绕式云母纸电容器较大地提升了其工作电压,有希望用于提升PFN-Marx(pulse forming line - Marx)发生器的整体储能密度水平。电容器寿命是确保装置可靠性的重要因素,而该电容器的寿命特性尚未清楚,其最优工作条件和装置的预期工作寿命未能明确。基于此,开展了微秒脉冲下云母电容寿命特性的预测模型和实验研究。首先,分析了云母电容的内部结构,建立仿真模型并进行了电场、热场模拟分析。其次,搭建了一个能够稳定长时间工作的寿命测试平台,通过该平台获取并分析了云母电容的退化参数、寿命数据和失效机理。根据寿命数据结果,本文修正了在给定运行因素下的云母电容寿命预测模型。结果表明,寿命预测模型与寿命测试结果基本匹配。研究工作将有助于发展云母电容的寿命预测,并为在微秒脉冲下使用云母电容的系统装置设计提供参考。
  • 图  1  云母电容:(1)~(4)- 4个相同的子电容

    Figure  1.  Mica capacitor: (1) to (4) - four identical sub-capacitors

    图  2  云母电容模型:1-环氧树脂板,2-引出电极

    Figure  2.  Simulated model of a mica paper capacitor: 1- epoxy board, 2-extraction electrode

    图  3  云母电容的电场分布

    Figure  3.  Electric field distribution of the mica capacitor

    图  4  云母电容的体积功率损耗密度

    Figure  4.  Volume power loss density of the mica capacitor

    图  5  云母电容的热场分布

    Figure  5.  Thermal field distribution of the mica capacitor

    图  6  测试平台的等效电路图

    Figure  6.  Equivalent electrical circuit of the test platform

    图  7  测试箱体:包括云母电容,气体开关和温度探头

    Figure  7.  Test box: including mica capacitor, gas switch and temperature probe

    图  8  充电电压波形(重叠模式,20 Hz,500 脉冲)

    Figure  8.  Charging voltage waveform (overlap mode, 20 Hz, 500 pulses)

    图  9  负载电压波形(重叠模式,20 Hz,500 脉冲)

    Figure  9.  Load voltage waveform (overlap mode, 20Hz, 500 pulses)

    图  10  第1~4云母电容的容值曲线

    Figure  10.  Capacitance curves of No. 1~4 mica capacitor

    图  12  第1~4云母电容的等效串联电阻曲线

    Figure  12.  ESR curves of No. 1~4 mica capacitor

    图  11  第1~4云母纸电容的绝缘电阻曲线

    Figure  11.  Insulation resistance curves of No. 1~4 mica capacitor

    图  13  测试及仿真的温度曲线

    Figure  13.  Temperature curves of test and simulation

    图  14  典型已击穿的云母电容:红色圈-击穿点

    Figure  14.  Three typical breakdown mica capacitors: red circle - breakdown point

    图  15  第1~4组次的测试结果和电压加速系数的拟合曲线

    Figure  15.  Test results of the sets 1~4 and fitting curve for acceleration factor of voltage

    图  16  第3,5~7组次的测试结果和反峰系数加速系数的拟合曲线

    Figure  16.  Test results of sets 3,5~7 and fitting curve for acceleration factor of reversal ratio Rre

    图  17  第3、8~11组次的测试结果和温度加速系数的拟合曲线

    Figure  17.  Test results of the sets 3, 8~11 and fitting curve for acceleration factor of temperature

    表  1  电场仿真的材料参数

    Table  1.   Material parameters of electric field simulation

    material relative
    permittivity
    conductivity/
    (S·m−1)
    aluminum 1.0 3.6×107
    mica 2.2 2×10−10
    epoxy 3.5
    下载: 导出CSV

    表  2  热场仿真的材料参数

    Table  2.   Material parameters of thermal field simulation

    material thermal
    conductivity/
    (W·K−1·m−1)
    specific heat
    capacity/
    (J·kg−1·K−1)
    density/
    (kg·m−3)
    aluminum 238.00 900 2700
    mica 0.75 500 2800
    epoxy 0.20 550 1200
    下载: 导出CSV

    表  3  寿命测试结果

    Table  3.   Results of Lifetime test

    No. Samples
    number
    Charging
    Voltage/kV
    Average
    Temperature/℃
    Reversal
    Ratio/%
    Average
    lifetime
    R-STD/%
    1 40 25 10 4 173500 4.7
    2 45 25 10 4 130750 4.8
    3 50 25 10 4 101500 6.3
    4 60 25 10 4 66750 6.4
    5 50 25 0 4 141000 3.2
    6 50 25 20 4 83100 5.1
    7 50 25 30 4 70250 5.2
    8 50 20 10 4 130500 5.8
    9 50 30 10 4 77750 5.8
    10 50 35 10 4 61750 5.6
    11 50 45 10 4 41750 7.8
    下载: 导出CSV

    表  4  寿命预测结果

    Table  4.   The lifetime prediction result

    Capacitor Voltage/kV Steady Temperature
    of test/℃
    Test Result/
    pulses
    Predicted
    Result/pulses
    Error/%
    C1 40 37 102000 95489 6.4
    C2 45 40 62000 62763 −1.2
    C3 50 45 42000 39015 7.1
    下载: 导出CSV
  • [1] 曾正中. 实用脉冲功率技术引论[M]. 西安: 陕西科学技术出版社, 2003

    Zeng Zhengzhong. Introduction to practical pulse power technology[M]. Xi’an: Shaanxi Science and Technology Press, 2003
    [2] 崔光曦, 李俊娜, 陈旭良, 等. 一种基于Marx发生器的纳秒脉冲实验平台[J]. 现代应用物理, 2022, 13: 040402

    Cui Guangxi, Li Junna, Chen Xuliang, et al. A nanosecond pulse experimental platform based on Marx generator[J]. Modern Applied Physics, 2022, 13: 040402)
    [3] Neuber A A, Chen Y J, Dickens J C, et al. A compact, repetitive, 500kV, 500 J, Marx generator[C]//2005 IEEE Pulsed Power Conference. 2005: 1203-1206.
    [4] 贾伟, 陈志强, 郭帆, 等. 不同过压耦合机制下Marx发生器建立时延的形成过程分析[J]. 现代应用物理, 2020, 11: 030401

    Jia Wei, Chen Zhiqiang, Guo Fan, et al. Analysis of the forming process of the Marx-erection time-delay under the different over-voltage coupling mechanism[J]. Modern Applied Physics, 2020, 11: 030401
    [5] 杨双, 孙晶晶, 李典耕, 等. 高效率高阻抗层叠Blumlein线固态脉冲发生器研究[J]. 现代应用物理, 2024, 15: 030401

    Yang Shuang, Sun Jingjing, Li Diangeng, et al. Blumlein lines solid-state pulse generator using high-efficiency and high-resistance stacked[J]. Modern Applied Physics, 2024, 15: 030401
    [6] Park S H, Ham Y J, Kim J S, et al. Reliability assessment of mica high voltage capacitor through environmental test and accelerated life test[J]. Journal of the Korean Crystal Growth and Crystal Technology, 2019, 29(6): 270-275.
    [7] Wang Huai, Blaabjerg F. Reliability of capacitors for DC-link applications in power electronic converters—An overview[J]. IEEE Transactions on Industry Applications, 2014, 50(5): 3569-3578. doi: 10.1109/TIA.2014.2308357
    [8] 王振, 肖凯, 张乔木, 等. 基于性能退化的铝电解电容寿命预测方法研究[J]. 电子器件, 2024, 47(5): 1247-1254

    Wang Zhen, Xiao Kai, Zhang Qiaomu, et al. Research on life prediction of Aluminum electrolytic capacitors based on performance degradation[J]. Chinese Journal of Electron Devices, 2024, 47(5): 1247-1254
    [9] Alwitt R, Hills R. The chemistry of failure of aluminum electrolytic capacitors[J]. IEEE Transactions on Parts, Materials and Packaging, 1965, 1(2): 28-34. doi: 10.1109/TPMP.1965.1135396
    [10] 李化, 李智威, 王国帅, 等. 脉冲功率应用中的金属化膜电容器寿命预测[J]. 强激光与粒子束, 2014, 26: 045016 doi: 10.3788/HPLPB20142604.45016

    Li Hua, Li Zhiwei, Wang Guoshuai, et al. Lifetime prediction of metallized polypropylene film capacitors in pulsed power applications[J]. High Power Laser and Particle Beams, 2014, 26: 045016) doi: 10.3788/HPLPB20142604.45016
    [11] 李化, 吕霏, 林福昌, 等. 应用于脉冲功率系统的高储能密度电容器[J]. 强激光与粒子束, 2012, 24(3): 554-558 doi: 10.3788/HPLPB20122403.0554

    Li Hua, Lv Fei, Lin Fuchang, et al. High energy storage density capacitors in pulsed power application[J]. High Power Laser and Particle Beams, 2012, 24(3): 554-558) doi: 10.3788/HPLPB20122403.0554
    [12] Liu D, Sampson M J. Some aspects of the failure mechanisms in BaTiO3-Based multilayer ceramic capacitors[C]//Capacitors and Resistors Technology Symposium (CARTS) International. 2012: 59-71.
    [13] Gill H M, Doney R L, Althoff E K, et al. New aging diagnostics for microdischarge assessment of high dV/dt stressed mica paper capacitors[C]//Conference Record of the the 2002 IEEE International Symposium on Electrical Insulation (Cat. No. 02CH37316). 2002: 327-330.
    [14] Yao Ran, Li Hui, Lai Wei, et al. Lifetime analysis of metallized polypropylene capacitors in modular multilevel converter based on finite element method[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 4248-4259. doi: 10.1109/JESTPE.2020.2981806
    [15] Wang Huai, Reigosa P D, Blaabjerg F. A humidity-dependent lifetime derating factor for DC film capacitors[C]//2015 IEEE Energy Conversion Congress and Exposition (ECCE). 2015: 3064-3068.
    [16] Zhao Jianyin, Liu Fang. Reliability assessment of the metallized film capacitors from degradation data[J]. Microelectronics Reliability, 2007, 47(2/3): 434-436.
    [17] 许洛源, 欧阳俊, 程振祥, 等. 电介质储能陶瓷的研究进展[J]. 现代技术陶瓷, 2025, 46(3/4): 195-246

    Xu Luoyuan, Ouyang Jun, Cheng Zhenxiang, et al. A review on the dielectric ceramics for high energy-storage application[J]. Advanced Ceramics, 2025, 46(3/4): 195-246
    [18] 董丽杰, 潘萌, 冯锐, 等. 高性能聚合物电介质薄膜研究进展[J]. 长春工业大学学报, 2025, 46(3): 200-206

    Dong Lijie, Pan Meng, Feng Rui, et al. Progress in high performance polymer dielectric films[J]. Journal of Changchun University of Technology, 2025, 46(3): 200-206
    [19] Makdessi M, Sari A, Venet P. Health monitoring of DC link capacitors[J]. Chemical Engineering Transactions, 2013, 33: 1105-1110.
    [20] Montanari G C, Fabiani D. Searching for the factors which affect self-healing capacitor degradation under non-sinusoidal voltage[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1999, 6(3): 319-325. doi: 10.1109/94.775617
    [21] Montanari G C, Simoni L. Aging phenomenology and modeling[J]. IEEE Transactions on Electrical Insulation, 1993, 28(5): 755-776. doi: 10.1109/14.237740
    [22] Smith D L, Savage M E, Ziska G R, et al. ZR Marx capacitor vendor evaluation and lifetime test results[J]. IEEE Transactions on Plasma Science, 2005, 33(4): 1273-1281. doi: 10.1109/TPS.2005.852423
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  6
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-14
  • 修回日期:  2025-10-05
  • 录用日期:  2025-09-27
  • 网络出版日期:  2025-10-14

目录

    /

    返回文章
    返回